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ABSTRACT9

Recently, 360-degree visual tracking has become increasingly important in 360-10

degree video processing technology. Although visual tracking technology in 2D videos11

has gradually matured, there is no universal method for visual tracking in 360-degree12

videos that can effectively address image stretching and object deformation caused13

by the equirectangular representation of 360-degree images. In this paper, we pro-14

pose a two-part method for 360-degree visual tracking. The first part is a general15

method that can be integrated into any 2D visual tracking system to be applied to16

360-degree videos. This part converts equirectangular images into 2D gnomonic pro-17

jections, enabling the use of existing 2D tracking algorithms while mitigating image18

distortion. Then, building upon the UPDT algorithm, the second part integrates the19

general 360-degree visual tracking method with additional enhancements to improve20

robustness and efficiency in 360-degree visual tracking. Furthermore, when tracking21

performance deteriorates, it combines results from the sample set and trajectory22

prediction to achieve more robust and accurate tracking. In our experiments, We23

use two datasets in 360-degree equirectangular representation to demonstrate the24

effectiveness and advantages of our proposed method. Additionally, we explore the25

application of 360-degree visual tracking methods in editing, enabling the automatic26

manipulation of moving objects in 360-degree videos.27
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1. Introduction30

Visual tracking, first theorized by Wax in 1955 (Wax 1955), has become a key research31

area in image processing with significant practical applications. Given the target’s ini-32

tial state in the first frame, tracking methods estimate its position throughout the33

video sequence. Based on the number of tracked targets, visual tracking can be cate-34

gorized into single-object and multi-object tracking. This paper primarily focuses on35

single-object tracking, where a single instance of an object class is monitored. 1
36

A 360-degree (360°) image, also known as a spherical image, is a crucial component37

in 360° video processing. However, existing image processing methods are generally38

based on two-dimensional images. To adapt to the 360° image processing pipeline, it39

is necessary to convert spherical images into two-dimensional planes while preserving40

1*Fang-Lue Zhang is the corresponding author.



Figure 1. The overall workflow of our two-part method for 360° visual tracking. The
first part (left side of the image) is a general 360° visual tracking approach based on
dynamic gnomonic projection. The second part (right side of the image) builds upon
the first and provides a more robust and enhanced 360° visual tracking solution.

Figure 2. Different spherical image representation methods.

omnidirectional information. The three most widely used image representation meth-41

ods are spherical representation (Figure 2a), equirectangular representation (Figure42

2b), and cubemap representation (Figure 2c) (da Silveira et al. 2022). In these meth-43

ods, the equirectangular representation can be treated as a standard 2D projection of a44

360° image and processed by existing algorithms for feature extraction and matching.45

Therefore, we generally use the equirectangular representation in 360° visual tracking46

for videos.47

Some advancements in 360° video capture and VR/AR display technologies have48

enabled increasingly immersive visual experiences. Prior research has begun to explore49

interaction techniques that enhance user experience in this context. For example, Li50

et al. investigated how bullet comments can be effectively displayed and inserted in51

immersive 360° video environments. (Wang et al. 2020) Their user studies showed52

that spherical sliding comments significantly improve user engagement and social in-53

teractivity and that intuitive drag-based insertion methods are generally preferred.54

Complementarily, (Li et al. 2022b) proposed Transitioning360, a system that enables55

efficient 360° video playback on 2D displays through content-aware NFoV (Normal56

Field-of-View) camera paths and spatially-aware transitions. This approach improves57

users’ ability to locate and follow relevant content while minimizing cognitive load.58

Together, these works highlight the importance of designing interaction models that59

balance freedom of exploration with guided navigation and social presence in 360°60

video experiences.61

In recent decades, significant progress has been made in single-object tracking with62

the development of numerous advanced algorithms (Song 2014; Liao et al. 2020; Zhou63

et al. 2022; Hong et al. 2024). These technologies are widely used in intelligent monitor-64
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ing, human-computer interaction, military guidance, and other fields. However, chal-65

lenges such as illumination changes, deformation, and occlusion make visual tracking a66

complex and ongoing research area (Yang et al. 2011). Nowadays, with advancements67

in computing power, Virtual Reality (VR) and Mixed Reality (MR) technologies have68

also evolved (Friston et al. 2019; Tursun et al. 2019). VR 360° videos (VR360°), offer-69

ing a full 360°×180° field-of-view (Schroers et al. 2018), have gained increasing atten-70

tion due to their immersive experience and applications in entertainment, education,71

tourism, and healthcare. Their integration with artificial intelligence and computa-72

tional photography presents new research opportunities. However, 360° visual content,73

stored using equirectangular projection, introduces geometric distortions that affect74

tracking accuracy (Coors et al. 2018; Li et al. 2022a; Wang et al. 2024). Addressing75

these distortions remains a key challenge, and current 360° tracking performance re-76

mains suboptimal. Additionally, existing 360° dynamic object editing methods struggle77

with moving objects and boundary distortions, often leading to editing failures.78

In this paper, we explore a method to enhance 360° visual tracking and investi-79

gate its application in dynamic object editing for 360° videos. We first employ the80

gnomonic projection method to propose a general 360° visual tracking approach and81

integrate it into the UPDT method (Bhat et al. 2018). Then, we improve the 360°82

visual tracking method by integrating two approaches. The improved method first83

combines UPDT-based 360° tracking with conventional visual tracking, applying the84

original UPDT method to the central region of the image while using the UPDT36085

method for boundary regions. Additionally, we refine the scale computation for target86

width and the Field of View (FoV), significantly enhancing robustness and computa-87

tional efficiency. Building upon this, we introduce specialized enhancements tailored88

for 360° visual tracking. The tracking quality is assessed by analyzing peak response89

values and the number of secondary peaks in the response map. Moreover, a sample set90

strategy is incorporated to mitigate sample contamination issues in complex tracking91

scenarios. For frames with challenging conditions, a Kalman filter is employed to pre-92

dict target position and scale. By combining sample set results with target predictions,93

overall tracking performance is further improved. We conduct extensive experiments94

and ablation studies to evaluate our method, analyzing its results and algorithmic pa-95

rameters. Experimental findings demonstrate that our proposed method significantly96

enhances tracking accuracy and efficiency in 360° ERP videos. Furthermore, we ap-97

ply our tracking approach to dynamic object editing in 360° videos, enabling direct98

modifications to moving objects while effectively addressing boundary and distortion99

issues caused by the ERP representation. Figure 1 illustrates the overall workflow of100

our method. The key contributions of this work are as follows:101

• We propose a general 360° visual tracking method based on the gnomonic pro-102

jection, enabling conventional 2D tracking algorithms to be applied to 360° ERP103

videos while mitigating distortions.104

• We enhance 360° visual tracking by integrating a dynamic bidirectional projec-105

tion approach with a trajectory-aware sample set strategy, combining 2D and106

360° tracking with motion modeling and Kalman filter-based prediction to im-107

prove robustness and efficiency.108

• We apply 360° visual tracking results to dynamic object editing, overcoming the109

limitations of existing 360° video editing techniques that cannot directly edit110

moving objects.111

This work advances both 360° visual tracking and video editing, addressing critical112
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challenges and paving the way for more effective 360° video processing.113

2. Related Work114

For better understanding, in this section, we revisit the background of visual tracking,115

including Discriminative Correlation Filters (DCF)-based methods and deep learning-116

based methods. Additionally, we discuss existing efforts in 360° visual tracking.117

2.1. Visual Tracking118

Trackers based on Discriminative Correlation Filters (DCF) have always been key119

methods in visual tracking. Compared to traditional tracking algorithms based on120

object detection (Song 2014), DCF improves computational efficiency and robustness121

by solving the ridge regression problem using circular structures in the frequency do-122

main. Early DCF methods like MOSSE (Bolme et al. 2010), KCF(Henriques et al.123

2014), and Staple (Bertinetto et al. 2016) have all enhanced the reliability of visual124

tracking while achieving online tracking. Additionally, SAMF (Li and Zhu 2015) and125

DSST (Danelljan et al. 2014) have incorporated scale processing. BACF (Schroers126

et al. 2018) improves the quality of extracted features by using HOG features. In127

DCF methods, the two main issues affecting visual tracking are the boundary effect128

and temporal filter degradation. Many methods have successfully utilized guidance to129

address these two issues and serve as prior models for visual tracking. To solve the130

first issue, the boundary effect, the Spatially Regularized DCF (SRDCF) (Danelljan131

et al. 2015) introduces penalties for the background when training correlation filters.132

Building on this, the Spatio-Temporal Regularized DCF (STRCF) in (Li et al. 2018)133

introduces spatio-temporal regularization to obtain a joint solution for the two main134

problems, achieving better performance than SRDCF. (Zhu et al. 2021) proposes a bi-135

lateral weighted regression sorting model with spatio-temporal correlation filters, fur-136

ther improving tracking accuracy. (Danelljan et al. 2016) introduces sub-pixel tracking137

through learning Continuous Convolution Operators (CCOT). Efficient Convolution138

Operators (ECOs) (Danelljan et al. 2017) are proposed to achieve a lightweight version139

of CCOT with generative sample space and dimensionality reduction mechanisms.140

Moreover, with the continuous development and wide application of deep learning141

theories in recent years, some researchers have also begun to integrate deep learning142

into visual tracking algorithms (Wang et al. 2018; Hu et al. 2018). Currently, the143

application of deep learning in RGB visual tracking can be roughly divided into two144

types: one is to apply deep learning to feature extraction and use correlation filtering145

as the framework for visual tracking methods; the other is purely based on neural146

network frameworks for visual tracking. Representative methods of the latter include147

DiMP (Bhat et al. 2019) and TransT (Chen et al. 2021). DiMP improves tracking148

performance by learning a discriminative target model through online optimization.149

By leveraging a transformer-based architecture, TransT effectively fuses target and150

template features for robust tracking.151

By combining deep features and handcrafted features, the UPDT (Bhat et al. 2018)152

algorithm improves tracking accuracy and robustness through the reasonable applica-153

tion of combined features.154
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2.2. 360° Visual Tracking155

Currently, there are limited efforts dedicated to integrating planar object editing and156

tracking into 360° videos. In the field of 360° visual tracking, researchers have adapted157

methods originally designed for 2D videos to address the unique challenges posed158

by 360° data. For example, (Cai et al. 2018) combines multi-scale kernelized correla-159

tion filters (KCF (Henriques et al. 2014)) with Kalman estimation to enhance scale160

handling and occlusion detection, using the peak sidelobe ratio (PSR) for identify-161

ing occlusions and resuming tracking once occlusion ends. Similarly, (Delforouzi et al.162

2016) focuses on improving tracking performance for unknown objects in 360° camera163

images, tackling challenges like non-planar rotations and complex backgrounds by re-164

fining detectors and classifiers. Another approach, described in (Delforouzi et al. 2020),165

integrates Kalman filters and the Lucas-Kanade method to address tracking challenges166

specific to 360° videos, leveraging YOLO and deep learning-based object detectors to167

extract object priors and enhance tracking robustness. Meanwhile, (Mi and Yang 2019)168

evaluates the performance of eight state-of-the-art tracking algorithms on 360° videos,169

identifying key challenges such as viewpoint changes, occlusions, deformations, lighting170

variations, scale changes, and camera shake.171

Regarding the dataset, the 360VOT dataset (Huang et al. 2023) serves as a com-172

prehensive benchmark for omnidirectional visual tracking. It consists of 120 high-173

resolution video sequences covering diverse scenarios and tracking targets across 32174

categories. Additionally, it provides four types of ground truth annotations, introduc-175

ing new evaluation metrics for 360° visual tracking.176

3. Proposed Method177

In this section, we propose a two-part visual tracking method for 360° ERP videos. It178

is a 360° visual tracking method based on dynamic gnomonic projection. The first part179

utilizes 2D gnomonic projection and point mapping to extend any 2D visual tracking180

approach for 360° visual tracking. The second part builds upon and enhances the181

first part, refining the UPDT-based 360° tracking framework to improve robustness,182

efficiency, and performance under complex tracking conditions.183

3.1. 360° Visual Tracking with Dynamic Gnomonic Projection184

Our approach in the first part presents a 360° visual tracking method using dynamic185

gnomonic projection, designed to address the distortions and spatial complexities in-186

troduced by equirectangular projection (ERP) images. By integrating spherical image187

transformation with conventional 2D visual tracking techniques, this method ensures188

accurate and seamless tracking in 360° video environments. Given its effectiveness and189

ease of implementation, it serves as the foundation for our subsequent work. This190

method is also referenced in our previously submitted conference paper (Peng and191

Zhang 2024).192

3.1.1. Overview193

The pipeline of the first part of this method is shown in the left half of Figure 1.194

Starting from the first frame, the initial target position is obtained in the original195

equirectangular projection (ERP) image. This serves as the starting point for subse-196
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Figure 3. 360° ERP image transform to 2D gnomonic image.

quent operations. The identified target position is used as the focal point to project the197

ERP image into a 2D gnomonic image with a fixed 90° Field-of-View (FoV), ensuring a198

locally planar view that mitigates distortions inherent in the spherical representation.199

The corresponding center and top-left corner of the target’s position in the ERP image200

are mapped onto the 2D gnomonic image for accurate localization.201

Next, this method maps the corresponding points of the center and the top-left202

corner of the target position in the ERP image onto the 2D image. The tracking203

features of the target object are then extracted from the 2D image, which includes204

HOG features, CN features, and deep features to enhance tracking robustness. The205

2D visual tracking algorithm is then applied to the gnomonic image, utilizing the206

extracted features to determine the new target position in the transformed 2D space.207

For subsequent frames, the previously tracked target position serves as the reference208

point for transforming the next frame’s ERP image into a 2D gnomonic projection with209

a fixed FoV. The 2D tracking method is continuously applied to the newly generated210

2D image, yielding an updated target position. The center and top-left corner of the211

tracked target are then mapped back to the ERP image to determine the new bounding212

box in the original 360° space. This process is repeated iteratively for each frame until213

the video concludes.214

By leveraging 2D gnomonic projection, this method effectively reduces distortion215

and enhances the applicability of conventional 2D tracking algorithms in the spherical216

domain of 360° videos. Additionally, mapping the tracking results back to the ERP217

representation ensures consistency and seamless integration within the original 360°218

image format. The combination of projection, feature extraction, 2D visual tracking,219

and bidirectional point mapping forms the core of our approach, ensuring robust and220

precise visual tracking across the entire 360° video.221

3.1.2. Local 2D Gnomonic Projection222

As illustrated in Figure 3, the first step in achieving 360° ERP visual tracking is to223

generate a 2D gnomonic projection from each frame of the original ERP image. To224

implement a Local 2D Gnomonic Projection, we need to determine the Field of View225

(FoV) and the projection center. This image represents a 2D embedded plane with a226

fixed FoV angle, where the observer’s viewpoint is positioned at the sphere’s center227

(O Point). Following the approach outlined in (Guo et al. 2022; Regensky et al. 2022),228

this method transforms the ERP image into a 512×512 2D representation, where the229

user’s observation point is positioned at the center of the sphere.230

The initial FoV is set to 90°, considering that target position changes between231

consecutive frames are generally small. Even for fast-moving targets, it is unlikely that232

they will move out of the image range within a single frame when using a 90° FoV.233

Additionally, due to the nature of gnomonic projections, a larger FoV would introduce234

significant distortion. Therefore, we set the initial FoV to 90° and dynamically adjust235
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the viewport’s FoV to 60° or 120° when the target’s length or width falls below or236

exceeds predefined thresholds. The 2D gnomonic images have a resolution of 512×512237

pixels, with thresholds set at 20 and 400 pixels, respectively, based on experimental238

results. For the projection center, we select the center coordinates of the tracked object239

from the previous frame to ensure that in the next frame, the target remains near the240

center of the 2D image while maintaining a sufficient FoV.241

3.1.3. Mappings between the ERP and the Gnomonic Images242

In the first frame, after generating the 2D gnomonic image centered on the target,243

the center and top-left corner of the target in the ERP image need to be mapped to244

the 2D image. In the 2D image, the target’s width is twice the difference between the245

top-left corner’s x-coordinate and the center’s x-coordinate, while the height is twice246

the difference between the top-left corner’s y-coordinate and the center’s y-coordinate.247

After tracking is completed in the 2D domain, the results are mapped back to the ERP248

image.249

First, the center of the 2D gnomonic image is set as the center of the ERP image,250

and calculations are performed based on the tracking results from the previous frame.251

Since the center of the 2D image corresponds to the target center in the ERP image,252

this method follows the same approach used for generating the gnomonic image to253

project the target’s top-left corner onto the 2D gnomonic image. As illustrated in the254

geometric diagram in Figure 3, the length of OC can be calculated based on the FoV255

angle as:256

OC =
a

2 tan
(
Fov
2

) (1)

For the n-th frame, let the point of interest in the 2D image be (xp2Dn , yp2Dn ), and257

the 2D image center be (xc2Dn , yc2Dn ). Then, the method computes the target point’s258

horizontal angle θ and vertical angle ϕ relative to the image center using trigonometric259

functions:260

θ = arctan

(
xp2Dn − xc2Dn

OC

)
, ϕ = arctan

(
yp2Dn − yc2Dn

OC

)
(2)

Finally, the corresponding positions of the target center and top-left corner in the261

ERP image are obtained by adjusting the previous frame’s target center with the angle262

changes θ and ϕ, ensuring accurate mapping between the 2D gnomonic image and the263

ERP image, thereby improving tracking accuracy in 360° videos.264

3.1.4. Scale Calculation and Boundary Case265

In 360° ERP visual tracking, the width of the ERP image is not entirely independent of266

latitude, as it gradually contracts toward the poles. To estimate the scale of the target267

in the tracking frame, adjustments must be made based on latitude. Given the target’s268

center and top-left coordinates (xcERP
n , ycERP

n ) and (xtlERP
n , ytlERP

n ), the actual target269

width in the ERP image is computed as:270
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WERP
target = 2 · abs(xtlERP

n − xcERP
n ) · cos−1

abs
(
HERP

2 − ycERP
n

)
· π

HERP

 (3)

Here, the height of the ERP image and the width of the target in the ERP im-271

age are denoted as HERP and WERP
target respectively. Additionally, special handling is272

required for boundary conditions. The left and right boundaries are cyclically con-273

nected, meaning objects exiting one side reappear on the opposite side. The top and274

bottom boundaries follow a symmetry rule, where objects moving past them reap-275

pear at a position mirrored across the centerline. These adjustments ensure accurate276

tracking within the ERP image framework.277

3.2. Robust and Enhanced 360° Visual Tracking278

While recent deep learning-based trackers such as DiMP (Bhat et al. 2019) and TransT279

(Chen et al. 2021) have demonstrated high accuracy in visual tracking, our method280

continues to rely on Discriminative Correlation Filter (DCF)-based frameworks. This281

choice was made primarily due to efficiency concerns. Deep learning-based meth-282

ods typically require significant computational resources and exhibit slower inference283

speeds, which makes them less suitable for real-time applications, especially in the con-284

text of 360° visual tracking that already involves computationally intensive operations285

like spherical-to-planar projection and coordinate transformations. In contrast, DCF-286

based trackers offer a good balance between accuracy and speed, and their lightweight287

structure allows for smoother integration into our two-stage 360° tracking framework.288

Furthermore, our proposed enhancements—including hybrid tracking strategies and289

adaptive projection—focus on improving robustness and efficiency without relying on290

heavy neural network architectures. As a result, the DCF-based approach remains291

more practical for our target use case. Among DCF-based methods, we chose UPDT292

(Bhat et al. 2018) as our baseline due to its favorable balance between tracking accu-293

racy and speed, achieved through the effective combination of deep and handcrafted294

features.295

The method introduced in the last section improves upon traditional 2D tracking296

by addressing cross-border issues and latitude distortion in 360° ERP images. While297

UPDT360 achieves the best results on 360° ERP datasets, its robustness remains a298

concern, as it can underperform compared to 2D methods in cases of drift or positional299

errors. The reliance on 2D gnomonic projection restricts the search area, making tar-300

get recovery difficult, while frequent updates in correlation filter-based tracking can301

lead to learning irrelevant content. Additionally, the method lacks strategies for han-302

dling deformation and occlusion, and the need for gnomonic projection in each frame303

increases computational cost, reducing efficiency by 20%-50%. To overcome these lim-304

itations, this chapter explores strategies to enhance the robustness, efficiency, and305

overall performance of 360° visual tracking.306

In this subsection, we propose two steps to enhance the existing UPDT-based 360°307

visual tracking method (UPDT360). The pipeline of this part is shown in the right half308

of Figure 1. In the first step, by combining spherical image transformations with con-309

ventional 2D visual tracking techniques, UPDT360 is optimized to improve robustness310

and efficiency. However, several challenges in 360° video visual tracking remain unre-311

solved, including deformation, occlusion, motion blur caused by fast movements, and312
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difficulty in tracking small targets. These issues occur more frequently in 360° visual313

tracking, which can result in tracking failures or drifts, significantly limiting overall314

performance. To address these problems, in the second step, we integrate the improved315

method with sample sets and target prediction, enhancing its ability to maintain stable316

performance under complex tracking conditions.317

3.2.1. Hybrid 2D and 360° Visual Tracking Method318

To strengthen robustness, it is necessary to expand the search area, ensuring that319

tracking is not confined solely to the 2D projection image in certain frames and that the320

target remains detectable even when tracking drift occurs. To enhance efficiency, the321

computational load of the more resource-intensive components of 360° visual tracking322

must be optimized.323

In our previous 360° visual tracking method (last section), each frame used the324

previous frame’s tracking center as the focal point, with the FoV determined based on325

the target’s size in the 2D projection of the previous frame, to perform the 2D gnomonic326

projection. However, distortion in 360° ERP images is not uniformly distributed across327

the entire image. It primarily occurs at the left and right edges and near the top and328

bottom borders—specifically in high-latitude regions and areas close to the horizontal329

boundaries. To address this, we propose a hybrid approach: applying standard 2D330

visual tracking methods to the central region of the image while utilizing the 360°331

visual tracking method for areas near the edges and borders. This approach reduces332

the computational overhead caused by frequent 2D gnomonic projections and the333

transformations between 2D and 360° ERP images. For a 360° ERP image with a334

width of WERP and height of HERP , and a target center located at (xcERP
n , ycERP

n ),335

the regions R(·) requiring 360° tracking are defined as follows:336

R(xcERP
n < αWERP ) ∪R(xcERP

n > (1− α)WERP )

∪R(ycERP
n < βHERP ) ∪R(ycERP

n > (1− β)HERP )
(4)

Where α and β are parameters that control the area in which this algorithm is337

applied, and they must satisfy α < 0.5 and β < 0.5 to ensure that the entire image338

area is not included.339

In this way, our method reduces the computational load of the 2D gnomonic pro-340

jection and point transformation in the central region of the image, while enabling341

targets in this region to utilize the original 2D visual tracking method. By expand-342

ing the search area, drifting targets have a higher likelihood of being fully re-tracked,343

thereby improving robustness.344

While this approach improves tracking efficiency and robustness, it introduces a345

new issue—the scale transition problem between 2D tracking and 360° visual track-346

ing, as well as scale adaptation challenges due to latitude distortion in 360° ERP347

images. To address this, we update the scale calculation method, replacing the pre-348

vious direct scaling by latitude with a dynamic adjustment applied to both 2D and349

360° tracking regions. The scale change factor for the n-th frame is computed as350

ωn = cos (φcERP
n )/ cos (φcERP

n−1 ), where φcERP
n and φcERP

n−1 denote the target’s center351

latitude in the ERP image for the current and previous frames, respectively. Using this352

factor, the target’s width in the n-th frame is adjusted accordingly. This method com-353

pensates for stretching at high latitudes and prevents abrupt scale transitions when354

switching between tracking modes, ensuring smoother adaptation and more accurate355
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visual tracking across different regions of 360° ERP images. Then, using ωn and HERP
n−1 ,356

which have been calculated by the tracking method, we can get the width of the target357

in the n-th frame as HERP
n = ωn ·HERP

n−1 .358

Additionally, our algorithm improves Field of View (FoV) selection by expanding359

its range from fixed values of 60°, 90°, and 120° to six options between 45° and 120° in360

15° increments. The adjustment thresholds have been refined from 20 and 400 pixels to361

30 and 300 pixels, dynamically decreasing FoV when the target’s smaller dimension is362

below 30 pixels and increasing it when the larger dimension exceeds 300 pixels. During363

transitions between 2D and 360° visual tracking, the last tracked frame is projected364

onto a 2D gnomonic image with a 90° FoV, and the target’s size determines the FoV365

for the next frame. This adaptive adjustment enhances tracking accuracy and clarity366

across varying target sizes.367

In general, our algorithm determines whether the target is in the central region of368

the image based on the tracking box center from the previous frame. At the start369

of each frame, the algorithm determines whether the tracking box center from the370

previous frame is within the central region of the image. If the target remains in371

the central region, the standard 2D visual tracking method is applied, followed by372

scale adjustment using the computed scale factor. Afterward, the algorithm reassesses373

whether the target is still in the central region. If so, it proceeds to the next frame374

without modification. However, if the target moves out of the central region, a 2D375

gnomonic projection is performed, mapping the tracking box onto a newly generated376

2D image, and the feature size is reset accordingly. If the target was already outside the377

central region in the previous frame, the 360° visual tracking method is used instead.378

After tracking, scale adjustment is performed to compensate for any distortions. The379

algorithm then checks whether the target remains outside the central region. If so,380

another 2D gnomonic projection is performed, and the FoV is adjusted dynamically381

based on the target’s size. If the target has moved back into the central region, the382

feature size is reset, as the next frame will switch back to the 2D visual tracking383

method.384

By dynamically switching between 2D and 360° visual tracking while adjusting the385

projection parameters, this method optimizes 360° visual tracking, ensuring smooth386

transitions and improved tracking efficiency.387

3.2.2. Detection of Deformation, Occlusion, Blur and Background Clutter388

In the previous section, we discussed ways to make the proposed 360° visual tracking389

method more robust and efficient. However, several challenges in 360° visual tracking390

remain unresolved, such as deformation, occlusion, motion blur caused by fast move-391

ments, and the tracking of small targets. These issues can lead to tracking failures392

or drifts, limiting the overall performance of our approach. Moreover, in 360° visual393

tracking, these challenges tend to occur more frequently, making their resolution a394

critical aspect of improving the method. Therefore, we will subsequently explore how395

leveraging knowledge from computer graphics and signal processing can help achieve396

better tracking results under these complex scenarios.397

First, we discuss how to detect deformation, occlusion, blur, and background clutter398

affecting the target. Here, we adopt the occlusion detection method proposed in (Xu399

et al. 2022). This approach relies on analyzing the convolution response map generated400

by the correlation filter. Initially, the target position is identified by examining the peak401

distribution in the response map. Under normal conditions, a single prominent peak402

indicates the correct target location. However, when multiple peaks of similar intensity403
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Figure 4. The response graph for general and complex cases.

appear, it may suggest that the target is occluded or affected by interference. To detect404

such cases, the method defines a threshold to evaluate the intensity difference between405

the highest and second-highest peaks. If this difference falls below the set threshold,406

occlusion may be occurring.407

While this method is effective for occlusion detection, our experiments indicate that408

it is a sufficient but not necessary condition for identifying occlusion. Specifically, mul-409

tiple peaks frequently appear during occlusion, but similar situations also arise when410

the target undergoes significant deformation or when tracking drift occurs. Therefore,411

we employ this method for detecting complex tracking scenarios, including occlusion,412

deformation, motion blur, and tracking drift.413

As illustrated in the upper part of Figure 4, when the target is not subject to in-414

terference, the response map displays a distinct primary peak with minimal secondary415

peaks. Conversely, the lower part of Figure 4 demonstrates that under challenging416

conditions, such as deformation, occlusion, or background interference, multiple peaks417

emerge, and the intensity of the primary peak decreases significantly. To quantify418

this phenomenon, the response value at the highest peak is denoted as Peakmax. If419

a nearby secondary reaches at least 80% of Peakmax, it is considered a significant420

secondary peak Peakside. Here, we can find that if the complex tracking situations421

happen, the number of Peakside is more than 2 or the value of Peakmax is less than422

0.1. These values are determined by a lot of experiments and parameters. By adopt-423

ing this method, various challenging tracking scenarios can be identified effectively,424

enabling the tracker to adapt and maintain robust performance.425

3.2.3. Sample Set Method426

Upon detecting challenging scenarios such as deformation, occlusion, blur, and back-427

ground clutter, appropriate tracking adjustments are required. As the current approach428

employs a DCF-based visual tracking method, erroneous filter updates may degrade429

performance in these cases. To mitigate this, maintaining a sample set that stores filter430

information from frames with reliable tracking, as proposed in (Huang et al. 2024),431

can enhance robustness. These stored samples assist in tracking when encountering432
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complex conditions, preventing the filter from learning incorrect data.433

To implement this, frames affected by occlusion, deformation, background clutter,434

or motion blur are identified, and specific measures are applied. First, in the corre-435

lation filter-based method, the filter typically updates at fixed intervals. However, if436

a complex tracking condition is detected, the update is skipped for that frame. Ad-437

ditionally, similar to (Huang et al. 2024), filters used during tracking are stored in a438

sample set, though without employing a full PN-tree structure. Instead, the sample439

set aids in recovering targets under difficult conditions.440

Then, frames are categorized based on whether the previous frame’s tracking was441

performed using the original 2D visual tracking method or the 360° visual tracking442

method. For targets in the image’s central region, the existing UPDT filter is sufficient,443

as it already handles typical challenges like deformation in conventional videos. Since444

distortion is less prominent in central regions of 360° ERP images, additional modi-445

fications are unnecessary. However, in frames where the original 2D tracking method446

is applied, if complex tracking conditions are detected, the filter update is skipped447

to prevent contamination. In contrast, if the target’s center position in the previous448

frame is not within the central region of the 360° ERP image, the filter update for449

that frame is also skipped.450

If no complex tracking situation is detected in the current frame using the method451

in last subsection, a sample is stored; otherwise, the sample set is utilized for tracking.452

In the storage process, the target position search remains unchanged, while sample453

storage follows a specific logic. A maximum of five samples can be stored at any time.454

For the first frame using the 360° visual tracking method, if no complex tracking455

condition is detected, the filter trained on the target features is stored as the first456

sample. Subsequently, each updated filter is stored until the five slots are filled, with457

new samples replacing older ones in a first-in, first-out (FIFO) manner.458

Once the sample set reaches five filters, each filter update requires computing its459

correlation with stored samples. If the lowest correlation value falls below a prede-460

fined threshold, the current filter replaces the oldest sample. This process continues461

throughout the video. When a frame is identified as having complex tracking condi-462

tions, its filter update is skipped, if applicable, and the sample set is used instead. If463

the sample set is empty, the current filter is applied for target position search. Other-464

wise, correlation values between the current filter and stored samples are computed,465

and the least correlated filter is selected for tracking.466

This sample set approach prevents filter contamination by unreliable frames, ensur-467

ing stable and accurate tracking across the video.468

3.2.4. Target Prediction in More Specific Cases469

To mitigate the impact of deformation, occlusion, and blurring on tracking results,470

this method detects target positions in frames identified as complex tracking scenarios471

and integrates the results into prediction. Inspired by (Xu et al. 2022) and (Wang472

et al. 2017), a constrained Kalman filter predicts the target’s position and dimensions473

in each frame, incorporating preprocessing for boundary crossings, weighted regression474

for trend estimation, and outlier removal for robustness.475

The tracking results from the past 10 frames serve as the basis for prediction, with476

all available frames used if fewer than 10 exist. Given the boundary characteristics of477

360° images, x-coordinates are adjusted when a frame-to-frame shift exceeds half the478

image width WERP /2 to prevent discontinuities. Outliers in the tracking results are479

detected by computing their deviation from the mean displacement and are replaced480
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by interpolated values when necessary.481

A weighted regression model is then employed to predict coordinates using a time-482

indexed linear regression equation yt = β0 + β1t, t = 1, 2, . . . , nmax, where β0 and483

β1 are estimated through Gaussian-weighted least squares. To maintain consistency484

with past motion patterns, trend adjustments are applied, and abrupt changes are485

constrained by setting a maximum displacement threshold. This threshold is defined486

as 1.3 times the mean of the absolute sum of coordinate variations over the past nmax487

frames, ensuring smoother transitions in motion predictions.488

To maintain continuity in 360° images, predicted x-coordinates are mapped within489

valid image boundaries using modulo operations. The predicted target width and490

height are estimated based on historical trends:491

WERP
n = WERP

n−1 +

n−1∑
i=n−nmax

∆WERP
i , HERP

n = HERP
n−1 +0.5×

n−1∑
i=n−nmax

∆HERP
i (5)

By integrating these steps, the method enhances tracking accuracy in challeng-492

ing conditions while ensuring smooth transitions and reliable scale adaptation across493

frames.494

3.2.5. Decision Fusion for Target Position and Scale Estimation495

The current frame’s coordinate and scale results are obtained from two sources: the496

sample set method and the target prediction. Determining the final values requires an497

adaptive weighting approach based on tracking confidence.498

First, the response map from the sample set method is re-evaluated using the met-499

rics described before, which is the highest peak response value Peakmax and the num-500

ber of significant secondary peaks Number(Peakside). A lower Peakmax or a higher501

Number(Peakside) indicates better tracking accuracy. Thus, the confidence weight for502

the sample set result is defined as:503

ωsampleset = 0.65 · 1

1 + exp ((Peakmax − 0.16) · 10)

+ 0.35 · 1

1 + exp ((Number(Peakside)− 2) · 1.5)

(6)

The weight for the Kalman filter prediction is complementary: ωpredicted = 1 −504

ωsampleset. The final coordinates are computed as a weighted sum:505

{
xERP
n = ωsampleset · xERP

n sampleset + ωpredicted · xERP
n predicted

yERP
n = ωsampleset · yERP

n sampleset + ωpredicted · yERP
n predicted

(7)

Similarly, for scale estimation, the width and height from both methods are weighted506

using the same sigmoid-based confidence measure. The final width and height are507

determined in the same manner as the coordinates.508

By adaptively balancing the sample set and target predictions based on response509

map confidence, this method enhances tracking robustness and ensures smooth tran-510

sitions in complex scenarios.511
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4. Experiments and Results512

To demonstrate the superiority and effectiveness of this method in 360° visual track-513

ing, experiments were conducted on the 360° visual tracking dataset using the im-514

proved UPDT360 method described in last chapter. Additionally, for the method in515

last chapter that combines conventional 2D visual tracking with 360° visual tracking,516

a parametric sensitivity analysis was performed to evaluate the impact of the region517

size used for 360° visual tracking. Lastly, the performance of our improved UPDT360518

method was compared against the state-of-the-art SAM2 method, which is based on519

segmentation tracking, to investigate their respective strengths and weaknesses. All520

experiments were implemented in MATLAB 2023b and conducted on a PC equipped521

with an Intel Core i7-14650HX CPU, 16 GB RAM, and a single NVIDIA GTX 4050522

GPU.523

4.1. Experimental Datasets524

In this section, we evaluate the performance of our proposed 360° visual tracking525

method using three trackers across various datasets. The primary dataset is a 360°526

ERP video benchmark in the OTB format (Wu et al. 2013), which includes videos527

from (Ambrož 2024; Mi and Yang 2019; Liu et al. 2018; Nasrabadi et al. 2019). This528

dataset comprises 21 challenging sequences that encompass scenarios such as occlusion,529

deformation, viewpoint changes, and fast motion, alongside challenges unique to 360°530

ERP videos, including distortion, boundary artifacts, and stretching near the poles.531

Furthermore, we conducted experiments on the 360VOT dataset (Huang et al.532

2023), a recent benchmark specifically designed for omnidirectional tracking. This533

dataset contains 120 sequences spanning 32 categories and introduces new evaluation534

metrics, such as dual success rate and angle precision. It provides additional validation535

of our method’s capability to handle complex omnidirectional challenges effectively.536

4.2. Comparison Methods537

In experiments in (Peng and Zhang 2024), we selected three existing filters (STRCF538

(Li et al. 2018), DeepSTRCF (Li et al. 2018), and UPDT (Bhat et al. 2018)), and539

continued using the previously improved 360° tracking methods based on these fil-540

ters: STRCF360, DeepSTRCF360, and UPDT360. Additionally, we incorporated AS-541

RCF (Dai et al. 2019) and its improved ASRCF360 filter in 360° visual tracking.542

This approach learns object-specific adaptive spatial weights that dynamically ad-543

just to appearance variations. Furthermore, several popular correlation filter-based544

tracking methods from recent years were included in the comparison. These methods545

include LADCF (Xu et al. 2019b), which ranked first in the VOT2018 challenge; ECO546

(Danelljan et al. 2017), renowned for its balance of efficiency and accuracy, and its547

handcrafted-feature variant ECO-HC (Danelljan et al. 2017); and GFSDCF (Xu et al.548

2019a), which significantly improves tracking accuracy while reducing feature redun-549

dancy and efficiently implementing tracking. We conducted a comprehensive compar-550

ison of these DCF-based 2D visual tracking methods, along with four 360° tracking551

methods derived from them, against our proposed method in this chapter. The com-552

parison focuses on evaluating the tracking success rate and precision to validate the553

advantages of our approach.554
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4.3. Parametric Sensitivity Analysis555

In this section, we perform a parameter sensitivity analysis on the method proposed556

in last chapter, which employs the original 2D visual tracking UPDT method in the557

central region of the image and the improved UPDT360 method in the boundary558

regions of 360° ERP videos. This analysis aims to identify which parts of the image559

should be treated as boundary regions and which as central regions to achieve optimal560

tracking performance.561

To determine the optimal boundary configuration for 360° and 2D tracking integra-562

tion, we analyze the left-right and top-bottom boundaries separately. Since left-right563

boundaries primarily involve edge connections with minimal distortion, the parame-564

ter range is set between 0.1 and 0.4. If denoted as s1, 360° tracking is applied when565

0 < xERP
n < s1 ·WERP and (1− s1) ·WERP < xERP

n < WERP , while 2D tracking566

is used in the central region.567

For the top-bottom boundaries, high-latitude distortions require a narrower range568

of 0.2 to 0.4. When represented as s2, 360° tracking is applied within 0 < yERP
n <569

s2 ·HERP and (1 − s2) ·HERP < yERP
n < HERP , while 2D tracking is utilized in570

the central region.571

Experiments on the first 360° video dataset evaluate these parameters. Initially, the572

top-bottom boundary is fixed at 0.4, and the left-right boundary varies between 0.1573

and 0.4 (Figure 5). Results indicate that while 0.1 achieves the highest precision, it574

has the lowest success rate. The best overall performance is achieved at 0.3, leading575

to its selection as the left-right boundary parameter.576

Next, fixing the left-right boundary at 0.3, the top-bottom boundary is adjusted577

between 0.2 and 0.4 (Figure 6). Although 0.2 provides better precision, 0.4 yields the578

highest success rate, making it the final choice.579

Therefore, the optimal boundary configuration is defined as 0 < xERP
n < 0.3 ·WERP

580

and 0.7 · WERP < xERP
n < WERP , or 0 < yERP

n < 0.4 · HERP and 0.6 · HERP <581

yERP
n < HERP , where the UPDT360 method is applied. Conversely, in the central582

region, 0.4 ·WERP < xERP
n < 0.6 ·WERP or 0.3 · HERP < yERP

n < 0.7 · HERP , the583

UPDT method is used, ensuring optimal tracking performance.584

Figure 5. The result of sensitivity analysis for x-coordinates.

4.4. Quantitative Analysis for the 360OTB Dataset585

In this session, we will conduct a quantitative analysis by combining the improved586

method proposed in last chapter with the improvements introduced in last section587
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Figure 6. The result of sensitivity analysis for y-coordinates.

Figure 7. Precision and success rate plots on the 360OTB dataset.

and applying them to 360OTB dataset.588

Similar to (Peng and Zhang 2024), we name the traditional UPDT tracking method,589

which has been improved using the 360° tracking approach, as UPDT360. We name590

the tracking results of combining UPDT360 with the method proposed in last sec-591

tion, which integrates traditional tracking with 360° tracking, as UPDT360 Enhanced.592

Based on this, the tracking results that incorporate the handling of complex track-593

ing scenarios are named UPDT360 Advanced. Using these as a foundation, along594

with the 360° tracking algorithms improved in the previous section, their original595

2D tracking methods, and the comparative methods described before, experiments are596

conducted on the first dataset. Figure 7 illustrates the comparison results between597

UPDT360 Enhanced, UPDT360 Advanced, UPDT360 and other methods.598

In Figure 7, it is evident that UPDT360 significantly outperforms UPDT and other599

2D tracking methods. The success rate and precision scores of UPDT360 demon-600

strate its superior ability to handle the challenges posed by 360° ERP videos, such601

as distortions and viewpoint changes. The UPDT360 Enhanced method further im-602

proves the success rate and precision by 1.5% and 5.1%, respectively, over the original603

UPDT360. The notable improvement in precision is primarily due to a more concen-604

trated tracking response, which facilitates higher localization accuracy using standard605

2D visual tracking approaches. Meanwhile, the success rate benefits from the newly606

introduced scale calculation, ensuring better target coverage within the tracking box.607

The UPDT360 Advanced method achieves the highest overall performance in both608

success rate and precision. Compared to UPDT360, it increases the success rate by609
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Figure 8. Tracking results of UPDT and UPDT360. The red box represents the
tracking results of UPDT360, while the green box indicates the results of UPDT.

2.5% and improves precision by 7.6%, surpassing UPDT360 Enhanced by an even610

larger margin. These results confirm that the enhancements proposed in last chapter611

effectively contribute to improved 360° visual tracking performance.612

Figure 8 compares the tracking results of UPDT and UPDT360 on two 360° ERP613

videos, highlighting both traditional tracking challenges and unique 360° difficulties.614

In the first video (top row), the target encounters illumination changes, boundary615

crossing, and deformation due to varying viewing angles. While UPDT adapts well to616

illumination changes, it struggles with 360°-specific challenges. In contrast, UPDT360617

effectively handles these issues, ensuring more precise tracking. In the second video618

(bottom row), the target, a soccer ball, faces rapid motion, boundary crossing, and619

width elongation from high-latitude distortion. UPDT fails to handle these combined620

challenges, whereas UPDT360 successfully addresses them, maintaining accurate and621

robust tracking throughout the video.622

Figure 9 compares the tracking results of UPDT360 Advanced,623

UPDT360 Enhanced, and UPDT360 across three different videos. In the first624

video (top), the target is heavily affected by background clutter. UPDT360 Advanced625

shows a clear advantage in tracking position and scale, while UPDT360 Enhanced also626

improves upon the original UPDT360. The second video (middle) presents motion627

blur and occlusion challenges. UPDT360 Advanced performs significantly better,628

accurately tracking the target during blurred frames and successfully re-identifying629

it after occlusion. The third video (bottom) involves target deformation. Both630

UPDT360 Advanced and UPDT360 Enhanced demonstrate better scale adapta-631

tion than UPDT360, with UPDT360 Advanced excelling further in handling scale632

variations, ensuring more stable tracking performance.633

Table 1 presents the overall FPS (Frames Per Second) for the three methods. From634

it, we can conclude that in terms of tracking speed, our methods also offer certain ad-635

vantages over UPDT360. Specifically, the UPDT360 Enhanced method demonstrates636

faster performance compared to the original UPDT360. This is primarily because the637

frequency of performing 2D gnomonic projections has been reduced. Unlike the origi-638

nal approach, the improved method does not require updates on every frame, thereby639

decreasing the overall computational load. While the UPDT360 Advanced method is640

slightly slower than UPDT360 Enhanced, this is due to the additional logic introduced641

in last chapter to handle complex tracking scenarios. However, it is still faster than642
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Figure 9. Tracking results of UPDT360 Advanced, UPDT360 Enhanced, and
UPDT360. The red box represents the tracking results of UPDT360 Advanced, the
green box indicates the results of UPDT360 Enhanced, and the blue box corresponds

to the results of UPDT360.

Table 1. Overall FPS of Our Trackers

Tracker UPDT360 UPDT360 Enhanced UPDT360 Advanced

FPS 0.7744 0.9120 0.8069

the original UPDT360. These results indicate that our improved methods not only643

enhance tracking accuracy but also achieve better tracking efficiency.644

4.5. Quantitative Analysis for the 360VOT Dataset645

Figure 10 presents the overall comparison results of our methods with other approaches646

on the 360VOT dataset.647

Although the UPDT360 method proposed in the previous chapter does648

not show significant advantages over the original UPDT method, our649

UPDT360 Enhanced and UPDT360 Advanced methods achieve notable im-650

provements. Among all traditional 2D tracking and 360° tracking methods,651

UPDT360 Enhanced and UPDT360 Advanced rank in the top two. Specifically,652

UPDT360 Advanced and UPDT360 Enhanced improve the success rate by 1.6% and653

2.9%, respectively, compared to UPDT360. Their precision rates increase by 0.7%654

and 2.5%, respectively, relative to UPDT360.655

The 360VOT dataset, unlike the 360OTB dataset, contains more videos and presents656

greater tracking challenges, frequently involving various complex tracking scenarios.657

These results demonstrate that when confronted with such challenges, our methods658

consistently achieve better success rates and precision, underscoring their effectiveness659

in handling complex tracking situations.660
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Figure 10. Precision and success rate plots of trackers on 360VOT dataset.

Figure 11. Analysis of several failure cases

4.6. Failure case analysis661

However, since we adopt a DCF-based framework as the foundation of our tracking662

method, it inherently relies on previously extracted features and the trained filters.663

At the same time, our approach cannot handle all complex scenarios. Therefore, some664

tracking failures still occur. Here, we analyze several representative failure cases.665

Due to our use of a fixed rectangular tracking box, the model learns from the entire666

content within the rectangle during each update. If the target object is irregularly667

shaped or occupies only a small portion of the bounding box, as in the first column668

of Figure 11 (the bicycle), the filter tends to learn a large amount of background669

information, which leads to tracking failure.670

As shown in the second column of Figure 11, the video contains many objects that671

resemble the target. In such cases, if the target continues to move, causing occlusion672

or overlap with similar-looking objects, it becomes easy for the tracker to mistakenly673

follow a different object, resulting in failure.674

In the third column of Figure 11, the target object is small, moves quickly, and675

experiences partial occlusion. These factors easily cause tracking drift. Additionally,676

rapid motion in 360-degree videos often results in irregular movement trajectories,677

which further increases the likelihood of tracking failure.678

Tracking in DCF-based frameworks depends heavily on feature extraction, particu-679

larly from the initial frames. As shown in the fourth column of Figure 11, the target680
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object appears highly unclear and visually ambiguous in the early frames. Under such681

conditions, it becomes difficult to extract sufficient features for learning the target’s682

appearance, ultimately leading to failure.683

These cases illustrate common types of tracking failure. Overall, our method still684

struggles in scenarios involving background clutter, similar-looking objects, fast mo-685

tion, small targets, and unclear initial features. These limitations indicate areas for686

potential improvement.687

4.7. Comparing with the SAM2688

Currently, segmentation-based methods like SAM2 (Ravi et al. 2024) are among the689

most popular approaches in tracking. To evaluate and compare the tracking accu-690

racy and efficiency of SAM2 with our methods, we ran SAM2 on videos from our691

dataset. However, due to limited GPU memory, processing longer videos with SAM2692

was not feasible. Instead, we selected a subset of representative videos for comparison.693

These videos are identified by their video numbers, where numerical values correspond694

to videos from the first 360° video dataset, while IDs starting with ”VOT” indicate695

videos from the 360VOT dataset. Each selected video includes at least one of the fol-696

lowing tracking challenges: cross-border movement, latitude variation, or traditional697

2D tracking challenges including deformation and occlusion. Videos with the cross-698

border attribute are labeled as CB, those affected by latitude variation are labeled as699

LV, videos exhibiting deformation are marked as DE, and those containing occlusion700

are labeled as OC. Since VOT videos are generally longer and encompass multiple701

challenges, isolating the effect of each attribute on tracking performance is difficult.702

Consequently, we selected relatively fewer videos from this dataset. Table 2 presents a703

comparison of tracking accuracy between our UPDT360 Advanced method and SAM2704

on these selected videos, with the best results for each video highlighted in red.705

Table 2. Tracking Accuracy Compared with SAM2

Video ID Attributes Accuracy

UPDT360 UPDT360 Advanced SAM2

02 CB, LV, DE 0.62678 0.63652 0.30094
05 DE 0.59746 0.66148 0.71313

14 CB, LV, DE 0.28078 0.26984 0.14109

15 CB 0.26988 0.51814 0.23469
17 DE, OC 0.42817 0.50365 0.85993

20 OC 0.46704 0.46515 0.70023
21 CB, LV, DE 0.23768 0.24546 0.26287

VOT03 OC, DE 0.02381 0.02705 0.22181

VOT04 CB, LV, DE, OC 0.01118 0.00821 0.00464
VOT57 CB, DE 0.46582 0.57794 0.38778

From the results in Table 2, it is evident that our method significantly outperforms706

SAM2 in videos with the cross-border attribute while achieving comparable perfor-707

mance in those with the latitude variant attribute. However, SAM2 performs better708

in handling deformation and occlusion. This discrepancy arises because SAM2 loses709

track of objects when they cross the left or right boundaries, whereas it excels at710
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Table 3. Tracking FPS Compared with SAM2

Tracker UPDT360 UPDT360 Enhanced UPDT360 Advanced SAM2

FPS 0.7744 0.9120 0.8069 0.0575

handling latitude variations, deformation, and occlusion by effectively extracting and711

retaining object boundary features. These findings indicate that while our method is712

less effective in boundary extraction compared to SAM2, it offers a clear advantage in713

addressing boundary-related challenges unique to 360° videos.714

Table 3 presents a comparison of tracking speed, measured in FPS, between our715

method and SAM2. The results indicate that our method has a clear advantage in716

tracking speed. SAM2 is significantly slower, making it unsuitable for online tracking717

and lagging far behind in tracking efficiency.718

In summary, while our method is less effective than SAM2 in handling some tradi-719

tional tracking challenges, it demonstrates notable advantages over SAM2 in address-720

ing boundary issues unique to 360° videos and in tracking speed.721

5. Application in 360° Video Editing722

While 360° visual tracking has valuable applications in areas such as video surveillance723

and intelligent transportation, its potential to significantly enhance the user experience724

in the VR field lies in its integration with 360° video editing technologies. 360° video725

editing involves modifying dynamic objects while maintaining spatial and temporal726

consistency. Traditional methods often rely on optical flow or manual segmentation727

masks, which can be prone to errors due to geometric distortions in equirectangular728

projections. To address these challenges, we integrate our 360° visual tracking method729

with existing editing frameworks, enabling automatic object tracking and modification730

across frames.731

Our approach consists of two main editing strategies: one based on the Neural732

Panoramic Representation (NPR) framework (Kou et al. 2024) and another extend-733

ing the Segment Anything Model for video (SAM2) (Ravi et al. 2024). In the NPR-734

based editing, UPDT360 tracking results replace manually provided masks, allowing735

automatic identification and selection of target objects. This eliminates the need for736

frame-by-frame segmentation, improving flexibility and efficiency. Beyond NPR-based737

editing, we further enhance 360° video editing by integrating UPDT360 with SAM2.738

While SAM2 enables object segmentation and editing through user prompts, it lacks739

an inherent understanding of 360° boundary continuity. Our method addresses this lim-740

itation by leveraging UPDT360 to maintain tracking consistency when objects cross741

the left or right frame edges in equirectangular videos, ensuring seamless editing.742

In this section, we introduce three specific editing operations under these two frame-743

works, demonstrating how our tracking-enhanced approach improves accuracy and744

efficiency in 360° video object editing.745
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Figure 12. Results of moving object geometric-aware editing. This figure consists of
four rows: the first two rows correspond to the editing results of the first video

(Building), while the last two rows correspond to the second (Turtle). For each video,
the first row shows the original frames, and the second presents the edited results.
Frame indices are provided to indicate the temporal position within the video.

5.1. Moving Object Geometric-aware Editing746

Our first editing application involves geometric-aware editing on moving objects, en-747

abling the addition of patterns or text that remain attached to the object, moving and748

deforming along with it. By integrating NPR with our UPDT360 tracking method, we749

achieve seamless texture mapping on moving objects. Due to GPU memory constraints750

and NPR performance limitations, each edited video contains only 30 representative751

frames. The specific implementation results are shown in Figure 11.752

In Figure 11, we apply geometric-aware editing to a building (top) and a turtle753

(bottom). The top part of Figure 11 presents a video from 360OTB dataset. In each set754

of results, the first row shows the original video frames, while the second rows present755

the edited results. Despite deformations and motion caused by camera movement, our756

method successfully overlays the letters “PH” in two different colors and fonts onto757

the building’s surface, naturally blending them like graffiti. The bottom part of Figure758

11 presents a video from the 360VOT (Huang et al. 2023) dataset, introducing greater759

challenges in tracking and editing moving objects compared to the previous video. The760

difficulty arises from the camera’s transition from underwater to above water, causing761

the turtle to undergo shape deformation. Additionally, after emerging above water, the762

turtle’s outline becomes less distinct due to partial occlusions from water reflections.763

In this scenario, extracting a foreground mask for each frame using existing methods764

is highly challenging due to the dynamic nature of both the scene and the object.765

However, by first tracking the target’s position with our 360° visual tracking method766

and then applying NPR for editing, we achieve more stable results. Even during the767

transition from underwater to above water, our method maintains accurate tracking768

and enables successful object editing.769
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Figure 13. Results of moving object texture replacement. This figure consists of four
rows: the first two rows show the editing results of a video where a mosaic effect is
applied to the roof, while the last two rows show the results of another video where
the texture of the pillow is replaced. In each video, the first row presents the original
frames, and the second displays the edited results. Frame indices are provided to

indicate the temporal position within the video.

5.2. Moving Object Texture Replacement770

Our second editing application involves texture transformation on objects, where the771

entire texture of a moving object is replaced with an edited version or precisely cen-772

sored using mosaics. The specific implementation results are shown in Figure 12.773

In Figure 12, we apply full texture replacement to a rooftop (top) and a pillow774

(bottom), both sourced from the 360OTB (Ambrož 2024; Mi and Yang 2019; Liu775

et al. 2018; Nasrabadi et al. 2019) dataset. In the top part of Figure 12, the rooftop is776

fully covered with a mosaic effect. By leveraging tracking for precise localization, we777

successfully apply texture replacement to ensure that the mosaic pattern fully covers778

the rooftop while leaving surrounding objects unaffected. In the bottom part of Figure779

12, the original pillow, which features an animal face design, is replaced with a plain780

pillow decorated with multicolored star patterns. The new texture seamlessly follows781

the pillow’s movement and deformation. To enhance clarity, we highlight the texture782

replacement target areas with yellow bounding boxes in the edited images. Integrating783

our method with NPR enables precise texture replacement for moving objects in 360°784

videos, ensuring seamless and realistic modifications.785

5.3. Moving Object Boundary Connection786

In the previous discussion, we introduced how (Ravi et al. 2024) employs object bound-787

ary extraction for visual tracking. Beyond tracking, SAM2 enables basic editing of788

tracked objects using promptable visual segmentation (PVS) and interactive video ob-789

ject segmentation (iVOS). With user prompts like clicks, bounding boxes, or masks,790

SAM2 tracks objects across frames using a streaming memory mechanism, ensuring791

segmentation consistency. Once tracking is complete, it determines object boundaries792

and applies color modifications, either through random mappings, color jittering, or793

local style transfer, preserving background integrity. The final adjustments are mapped794
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Figure 14. Results of moving object boundary connection. This figure consists of four
rows: the first two rows show the editing results of the first video (Cat), while the
last two rows correspond to the second (Dancing). In each video, the first row

presents the results edited using SAM2 alone, while the second row shows the results
after combining SAM2 with our 360° visual tracking method. Frame indices are

provided to indicate the temporal position within the video.

back onto the 360° ERP video, ensuring frame consistency.795

However, as analyzed in last chapter, our comparison shows that SAM2 struggles796

when objects cross the left or right boundaries of the frame. Since SAM2 was not797

designed for 360° ERP videos, it lacks an understanding of boundary connections,798

leading to tracking failures when objects transition across frame edges.799

To address it, our third application extends the original SAM2 method by integrat-800

ing our 360° visual tracking approach. Specifically, when an object partially overlaps801

with the left or right boundary, our tracking algorithm replaces the SAM2 output,802

ensuring seamless boundary continuity. This enhancement enables consistent object803

tracking and editing across 360° ERP videos. Figures 13 illustrate the results of editing804

tracked objects by randomly altering their colors in two different video sequences. The805

first set (top) of results is generated using only SAM2, while the second set (bottom)806

combines SAM2 with our UPDT360 method. These experiments were conducted on807

videos from both the 360OTB dataset (Ambrož 2024; Mi and Yang 2019; Liu et al.808

2018; Nasrabadi et al. 2019) and the 360VOT dataset (Huang et al. 2023).809

In the top part of Figure 13, when the cat crosses the boundary, SAM2 (1st row)810

fails to maintain consistent editing, causing the target to disappear in the output.811

In contrast, integrating SAM2 with UPDT360 (2nd row) ensures continuous object812

editing. A similar issue occurs in another video results in Figure 13, where the dancing813

person crosses the boundary. SAM2 (3rd row) partially detects and edits the target,814

but the result is incomplete and unstable, struggling with accurate tracking after the815

transition. Instead, utilizing SAM2 in combination with UPDT360 (4th row) ensures816

seamless editing before and after crossing, though during the transition, the target817

is sometimes only partially edited, leaving room for improvement. However, once the818

object is fully visible again, tracking and editing remain consistent.819

Therefore, by integrating SAM2 with our 360° visual tracking approach, we effec-820

tively enhance editing performance in 360° videos, addressing the challenges posed by821

boundary transitions and ensuring a more stable and accurate object editing process.822
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Figure 15. One results with all three moving object editing methods. The first row
shows the original frames of the video, while the second presents the edited results.

Frame indices are provided to indicate the temporal position within the video.

Finally, Figure 14 demonstrates all three moving object editing methods integrated823

with our 360° visual tracking approach. The Moving Object Geometric-aware Editing824

method modifies the content on the right-side billboard, while the Moving Object825

Texture Replacement method changes the color of the taxi in the center. Additionally,826

the Moving Object Boundary Connection method applies a mosaic effect to the person827

on the left-side billboard, enabling the editing of multiple moving objects within the828

scene. For better visualization, we use yellow bounding boxes in the edited images (the829

second row) to indicate the specific areas where texture replacement has been applied.830

These results highlight the versatility of our 360° visual tracking method, showcasing831

its ability to support various moving object editing applications in 360° videos. This832

enhances user interactivity and engagement in VR video experiences.833

6. Conclusion834

In this paper, we first present a method to convert 360° visual tracking into 2D vi-835

sual tracking via projection. Based on this approach, we further explore strategies836

to enhance tracking accuracy, robustness, and efficiency. To improve precision and837

computational efficiency, we classify the image into central and boundary regions, dy-838

namically adjust the scale based on latitude, and adapt the FoV according to the839

target’s size.840

To further enhance performance, we introduce a sample set mechanism to detect841

frames where tracking quality deteriorates. Additionally, we employ a Kalman Filter-842

based trajectory prediction method to estimate the target’s position and size in frames843

where tracking fails. This mechanism complements the sample set approach, achieving844

more accurate and stable tracking in challenging conditions.845

Experiments conducted on two datasets validate the effectiveness of our proposed846

methods, demonstrating notable improvements in tracking precision and success rates847

while ensuring adaptability to various 360° ERP attributes. We further integrate the848

proposed tracking method into an existing 360° editing application, verifying its prac-849

tical applicability.850

While our method is not inherently designed for multi-object tracking, multiple851

instances of the same tracking framework can be executed in parallel to track multiple852

targets. However, this approach increases computational complexity proportionally to853

the number of targets, as each requires an independent feature set and tracking process.854

Regarding editing, it is feasible to simultaneously edit multiple targets as long as there855

is no occlusion between them. In scenarios involving occlusion, additional processing856

is needed to distinguish and handle overlapping targets effectively.857

Future improvements could include integrating Transformer-based tracking for en-858

hanced accuracy and adapting bounding boxes to better fit 360° ERP images to re-859

duce tracking drift. Additionally, leveraging deep learning for 360° feature extraction860

presents promising opportunities for further advancements in 360° visual tracking.861
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