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1. Introduction 
 

Many geometry processing problems can be reduced to the problem of computing certain scalar field defined on 

surfaces or volumes. Harmonic field, as the solution of the Laplace equation with given boundary conditions, is one of 

the most popular scalar fields. It has widely applications nearly covering the whole geometry processing field, ranging 

from interpolation, modeling, filtering, parameterization, remeshing, deformation, segmentation, morphing, to many 

more. This may benefit from its nice properties, such as smooth, unique up to the boundary conditions, with no local 

extrema other than on the boundary, a measurement of mapping distortion, efficient to calculate, etc. 

Harmonic field is a global support scalar field. Given Dirichlet’s boundary condition, a harmonic field smoothly 

blends the boundary values across the whole domain. To design such a field, users need to specify appropriate boundary 

conditions according to their requirements, which is the key step for the geometry processing applications. In quad-

meshing or hex-meshing oriented parameterizations, one type of method is to generate quad-patch boundaries or 

polycube surfaces as the boundary conditions (Tong et al, 2006; Dong et al, 2006;Li et al, 2007; Xia et al, 2010; Li et al, 

2011). In mesh segmentation, one usually places boundary conditions on the prominent features of the shape (Lai et al, 

2009; Tierny et al, 2012; Au et al, 2012). However, in some applications, it is not intuitive for users to determine such 

boundary conditions. For example, in handle based deformations (Botsch and Kobbelt, 2004; Zayer et al, 2005), one 

should select and set handle vertices as the boundary conditions to control the influence region of the deformation, which 

is a difficult and inconvenient task. In Poisson-based merging (Yu et al, 2004; Deng et al, 2013), it is not easy to determine 

the influence region of the error difference as well, or it may excessively change the shape if the influence region is not 

prescribed. 

In the paper, we propose a new scalar field, which can control the influence region conveniently while inherits some 

nice properties of harmonic field. The scalar field is smooth with controllable zero-value region away from the boundary 

and is called “localized quasi-(bi)harmonic field”. To calculate the field, we formulate the problem as a l1-based convex 

optimization (Xu et al, 2015) and solve it via a quadratic program. We further apply the scalar field to mesh deformation 

and mesh merging and show its benefits of controllable influence region over the traditional algorithms. 

The rest of the paper is organized as follows: Section 2 is the related work. Section 3 reviews the harmonic field. 
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Abstract 
(Bi)harmonic field has wide applications in geometry processing. Traditionally, to locally control the influence 
region of a (bi)harmonic field, users usually need to determine the range of its support, regions with non-zero 
scalar values, by prescribing appropriate boundary conditions. However, this way is non-intuitive and 
inconvenient. We proposed localized quasi-(bi)harmonic field, which is achieved through a l1-norm regularized 
convex optimization. It can conveniently control the local support of the scalar field while still keeping some 
nice properties of the (bi)harmonic field. We applied the localized quasi-(bi)harmonic field in applications such 
as shape deformation and shape merging, and the experiment results show its benefits. 
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Section 4 introduces our localized quasi-(bi)harmonic field and its solution. Section 5 shows results of localized quasi-

(bi)harmonic field applied to mesh deformation and merging. And the last section makes a conclusion.  

 

2. Related work 

 

Harmonic map or harmonic field is widespread in the geometry processing community. It appeared in early days to 

compute minimal surfaces and was discretized on triangular mesh (Pinkall et al, 1993) and henceforth other domains, 

such as tetrahedral mesh (Wang et al, 2004) and general polygonal meshes (Alexa and Wardetzky, 2011). 

The energy of the harmonic field (Dirichlet energy) is a measurement of the stretching of a mapping, which can be 

used to compute parameterizations and deformations. Eck et al (1995) first proposed harmonic mapping for surface mesh 

parameterizations. Gu et al (2003) computed global conformal parameterizations for surfaces with non-trivial topologies, 

which reduces to calculating harmonic fields. Wang et al (2004) utilized harmonic field to 3D for harmonic volumetric 

parameterizations, which can be extended to other kinds of volumetric mappings (Jin et al, 2015). Joshi et al (2007) 

proposed harmonic coordinates achieved by harmonic fields for cage deformations. Ben-Chen et al (2009) introduced a 

variational framework to compute harmonic maps for shape deformations. Deng et al (2013) recently used MVC (Mean 

Value Coordinates) method to approximate harmonic fields for mesh merging. 

Harmonic field is a smooth scalar field which can be obtained efficiently, thus it can be used for approximating 

distance field, remeshing, etc.. Ni et al (2004) took harmonic field as a fair Morse function to extract the topological 

structure of a shape. Zayer et al (2005) used harmonic field instead of geodesic distance field to propagate rotations for 

shape deformation and the method was extended to the volumetric case by Liao et al (2009). Dong et al (2005) applied 

harmonic field for quadrilateral remeshing by computing its gradient field and its orthogonal vector fields. Tong et al 

(2006) used singularity graph to partition the mesh into quad-patches and computed global harmonic fields with 

constraints on each patch boundary for quad-remeshing. Xia et al (2010) decomposed a volume into the direct product 

of a two-dimensional surface and a one-dimensional curve and traced the integral curve along the harmonic field for hex-

meshing. Li et al (2011) also computed three orthogonal harmonic fields for facial hex-meshing.  

Harmonic field is shape-aware and could be used for shape analysis. Lai et al (2009) extended the random walk 

method in image segmentation to mesh, which reduces to computing some harmonic fields. Tierny et al (2012) designed 

a harmonic field as a Morse function and extracted its Reeb graph to segment the mesh into patches for quad-remeshing. 

Au et al (2012) designed a concavity-aware harmonic field which is befit for segmentation. Zheng et al (2013) used 

harmonic field for pairwise analysis and induced a new class of shape descriptors that are more global, discriminative, 

and can effectively capture the variations in the underlying geometry. 

As is introduced, harmonic field is quite useful. To design a harmonic field, one key step is to prescribe the boundary 

conditions. However, it is not an easy task for users in some situations, e.g. controlling the influence region, which is 

vital in some applications such as mesh deformation and mesh merging. To the best of our knowledge, we have not seen 

any work on designing harmonic field with local support in the field of geometry processing. But some work on Poisson-

based image cloning devised special harmonic field with control of influence region to preserve the important content of 

the source image. Ding and Tong (2010) used an alpha map to indicate the region to be preserved. Du and Jin (2013) 

substituted a weighted gradient of the source and destination image with the traditional gradient and the weight is used 

to control the influence region. In geometry processing, to achieve the goal of locally controlling the deformation, Deng 

et al (2013) proposed a sparsity-enhancing framework for exploring local modifications of constrained meshes, which 

has similarity with our work. However they focused on computing deformations with local control while ours aiming at 

computing a scalar field. Zhang et al (2014) presented local barycentric coordinates via optimizing the total variation of 

the barycentric coordinate functions which is also used to locally deform a shape. Our work reformulates the harmonic 

field from the sparse-coding point of view, enabling it to flexibly control the influence region with one parameter while 

not sacrificing its good property, e.g. smoothness. 

 

3. Harmonic field 

 

Harmonic field is the solution of the following steady-state elliptic equation with certain boundary conditions,  
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0f  ,                (1) 

where Δ is the Laplace operator and f is a twice continuously differentiable real function defined on domain Ω. The above 

equation is also known as Laplacian equation, which can be derived through the critical point of the Dirichlet energy 

below,  

 
2| | .dE f


         (2) 

For the discrete setting, we consider the case when the harmonic function is defined on a triangular mesh M = {V, T}, 

where V = {vi} denotes the vertex set and T = {ti} stands for the set of triangle faces. Due to the piecewise-linear nature 

of the triangular mesh, we can uniquely determine a scalar field u by prescribing a scalar value ui for each vertex vi and 

extend linearly over each triangle. The density of Dirichlet energy on each triangle face is thus constant and the total 

energy over the triangular mesh can be calculated as,  
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where At is the area of triangle t. By the derivation the above energy function and setting its gradient to zero, we can 

obtain a system of linear equations (Pinkall et al, 1993),  

 Lu = 0,               (4) 

where u = [u1,u2,…,uN]t (N = |V|) and L = (lij) is the sparse Laplacian matrix whose entries are given by,  
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In the above equation, E is the edge set of the mesh, ωij can be set according to different discretization schemes and 

applications (Wardetzky et al 2007), and it is usually defined by the well-known geometry-aware cotangent weights,  

ω
ij
= 

1

2
(cot(α

ij
)+cot(β

ij
)),  

where αij and βij are opposite angles to edge <i, j>. 

Combining Eq. (4) with the Dirichlet's boundary constraints represented as the matrix equation, Cu = p (where p is 

the vector of boundary values), the harmonic field can be calculated through a symmetric and positive-definite linear 

system, which can be efficiently solved by Cholesky factorization. 

 

4. Localized Quasi-(bi)harmonic Field  

Harmonic field is uniquely determined by the Dirichlet’s boundary conditions. In some applications, users need to 

carefully set boundary conditions appropriately to control the influence region of the field, such that the field becomes 

local support. However, this method is not intuitive and inconvenient. 

We therefore proposed a new scalar field which can flexibly control the influence region. The key idea lies on the 

observation that local support means the values of the field in the remaining domain are zeros, and thus controlling the 

influence region equivalents to controlling the number of zero-value of the field u, which can be formulated by the sparse 

coding theory (Xu et al, 2015). 

In sparse coding theory, ||u||0 is the direct choice of counting the number of non-zero entries of the vector u, where  

||﹒||0 denotes the l0-norm. However, the problem of finding the sparsest solution using ||﹒||0 is NP-hard and difficult 

even to approximate. In common approach, the l0-minimization problem is usually relaxed to l1-minimization, which 

also induces sparsity but becomes convex. Thus, to achieve a sparse harmonic field, we obtain the following equation,  

     u* = arg minu ||u||1 

      s.t. Lu = 0, Cu = p,     (6) 

 Note that the feasible region described by the equalities in Eq. (6) is a single point, thus the sparsity measure of the 

object function does not take effect. We therefore relax the Laplace equation Lu = 0 to ||Lu||2 < ε, where ε is a non-
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negative real parameter, and transform Eq. (6) to the following equation,  

u* = arg minu ||Lu||2 + λ||u||1, 

 s.t. Cu = p                (7) 

where λ is a positive parameter balancing the two terms. 

The formulation above is the well-known least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996). 

To solve the problem, we eliminate the absolute sign in Eq. (7) by introducing a set of slack variables, z = [z1 z2 … zN], 

where N is the number of vertices. Then it can be transformed to the quadratic program as follows,  

u* = arg minu,z uTLTu + λz , 

s.t. Cu = p,  -zi < ui < zi i =1,2,…,N    (8) 

    Note that the first term of the object function in the above equation is the thin-plate energy (Kobbelt et al, 1998) and 

its critical point is a biharmonic field. Because the Laplace equation Lu = 0 is not strictly satisfied in Eq. (8), we call its 

solution “localized quasi-biharmonic field”. In practice, we could replace the thin-plate energy with the Dirichlet energy 

uTLu (also known as “membrane energy”) and its solution thus corresponds to “localized quasi-harmonic field”. The 

optimization is convex, i.e. global minimizer always exists, and standard solvers are available. 

 

5. Results 

5.1 Fields Comparison 

We solved the constrained optimization in Eq. (8) by the MOSEK optimizer (ApS, 2015). Fig. 1 shows the results 

of the (bi)harmonic fields and localized quasi-(bi)harmonic fields. Note that all the fields smoothly blend from one end 

to the other. However, the (bi)harmonic field needs to constrain vertices on both ends of the rectangle and the influence 

regions cover the whole domain, while the localized quasi-(bi)harmonic field only constrains vertices on one end and 

their influence regions are local. Besides, comparing to the quasi-biharmonic field, the quasi-harmonic field has much 

narrower influence regions. Thus we could choose one of them for different applications. 

 

Figure 1: (Bi)harmonic field and localized quasi-(bi)harmonic field. (a) harmonic field, (b) biharmonic field, (c) localized 

quasi-harmonic field (λ = 1), (d) localized quasi-biharmonic field (λ = 1). The green points denote the constrained vertices, 

where the right ends of all the bars are set to 1 and the left ends of the bars (a) and (b) are set to 0. The colors from blue to red 

map the scalar value from small to large. 

Our proposed field shares the nice property of smoothness with the traditional (bi)harmonic fields. Though it is not 

easy work to give a theoretical proof that a single local support exists only near the constrained region, we found the fact by 

experiments. One possible explanation is that the membrane or the thin-plate energy tries to smooth the field. And the 

appearance of other non-simply connected support would lead to non-smooth field, which may be restrained by the 

energy minimization.  

5.2 Applications 

To show the benefits of the proposed localized quasi-(bi)harmonic field on controlling the influence region, we 

experimented on two applications, handle-based mesh deformation and Poisson-based mesh merging. 

    In handle-based mesh deformation, the position change of handle vertices are propagated to the whole mesh by a 

smooth field, i.e. (bi)harmonic field. The filed can be achieved by solving a Laplace equation or its higher order version, 

L(n) u = 0 (u is the 3×N matrix for the coordinates of all the vertices), under Dirichlet’s boundary conditions. Thus the 

new shape can be recovered as v' = v + u (Botsch and Kobbelt 2004), where v is the rest shape, and v' is the new shape. 
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Commonly, to generate a deformation field, users need to prescribe several handle constraints as boundary 

conditions. However it is non-intuitive, because users usually do not know which vertices should be fixed. While for 

our localized quasi-(bi)harmonic field, users could save the effort to select the fixed vertices.  

 

Figure 2: Planar deformation with localized quasi-biharmonic field (b) and biharmonic field with different constraints (c, 

d, e).  (a) is the rest shape. The color indicates the displacement from the rest pose (the same below).  

Our method can deform shapes locally by manipulating the handles only. Fig. (2) and Fig. (3) show the comparison 

results of these two fields for the cases of planar deformation and surface deformation. In Fig. (2), with only one handle 

vertex, the result of localized quasi-biharmonic field achieves its goal in locally changing the shape (b), while the result 

of biharmonic field just parallel translates the shape without being deformed. To obtain the local deformation by 

biharmonic field, we set different positional constraints and obtained the results in (d) and (e). However, in both cases, 

the shape changes globally. Fig. (3) displays another example, where the feet and the tail of the dinosaur model are nearly 

fixed after the deformation with our method, though only the mouth is constrained, while we have to specify the fixed region 

to achieve the similar results for the traditional method. 

 

Figure 3: Surface deformation for the dinosaur model with biharmonic field where the mouth and the feet are constrained 

(a) and localized quasi-biharmonic field where only the mouth is constrained (b). 

Poisson-based mesh merging is first proposed by Yu et al (2004). The goal is to merge two partial meshes at their 

open boundaries while keeping the detail of the two meshes. The key idea of Poisson-based method is to seek a function 

f , whose gradient field is as close as possible to that of the source mesh S, which is formulated as minf ||▽f - Rg||, where 

g is the gradient field of S and R is a rotation field. The minimization leads to a Poisson equation, Δf = div(Rg). If the 

boundaries of the two meshes are well-aligned, R can be approximately given by the identity matrix I. Thus the Poisson 

equation becomes a simpler form, Δf = div(g). 

Following the idea of Pérez et al (2003), we define the correction function f and transform the above Poisson equation 

to the Laplace equation, 

0 s.t. | ( * ) | Sf f f h    
 

where f* and h are the coordinates of the target and source mesh. And the final output is f h f  . The new 

formulation can be also explained as to propagate the differences on the boundary to the inner mesh.  

If the boundary differences are large, the whole shape to be merged may be distorted, leading to visual artifacts for the 
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traditional harmonic field, while the most part of the shape keeps unchanged and the result looks more natural for our 

field. Fig. (4) and Fig. (5) show two merging examples with the harmonic field and the localized quasi-harmonic field. 

Fig. (4) merges a dragon head to a horse body. Though the results are visually the same, our result has less 

displacement error than that of the traditional harmonic field (see the mouth of the dragon head). Fig. (5) merges a face 

mesh to a head mesh. Note the shape of mouth is largely twisted with the traditional method while ours is well preserved 

(see the figures in (b) and (c)).

(a) (b) (c)

 

Figure 4:  A dragon head is merged to a horse body with the harmonic field (b) and the localized quasi-harmonic field 

(c). The initial positions and merging boundaries of the both meshes can be seen in (a).  

 

Figure 5: A face is merged to a head with the harmonic field (b) and the localized quasi-harmonic field (c). The initial 

positions and merging boundaries of the both meshes are shown in (a). 

 

5.3  Parameter 

The only parameter λ in Eq. (7) is used to control the size of influence region and the smoothness of the field. The 

value of λ is inversely proportional to the size of influence region, i.e. larger values lead to smaller influence region and 

vice versa. Fig. (6) displays deformation results with different values of λ. In the figure, we find that with the 

decreasing of λ, the size of influence region of the deformation increases, and the deformed shape becomes smoother. 

Note that the handle of the ball in (a) is very sharp because of the large value of λ. Thus, we have to choose an 

appropriate value for λ to balance the size of influence regions and smoothness for different applications. 

 

Figure 6: A sphere is deformed by localized quasi-biharmonic field with different parameters λ. (a) λ = 10, (b) λ = 1, (c) 

λ = 0.1,(d) λ = 0.01. 

 

5.4 Performance 

We implemented the algorithm in C++ and ran it on a computer with 2.33-GHz 4 cores CPU and 4-GB memory. All 
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linear algebra operations were carried out with Eigen library (Guennebaud et al, 2010). In the optimization (Eq.7), the 

quadratic program has 6×N variables and 6×N linear inequalities for the both applications and it was solved by MOSEK 

optimizer. Tab. (1) presents time statistics of the results above . We note that the performance is not so good for interactive 

applications in general. 

Table 1:  Time statistics for the results, where ♯V/♯F stand for the number of vertices and faces of the mesh. 

Mesh (♯V/♯F) Times (s) Mesh (♯V/♯F) Times (s) 

Woody (694/1267) 5.9 Dragon (2734/5429) 107.8 

 Dina (4434/8864) 740.8 Face (4708/9162) 536.6 

6. Conclusion 

 

We proposed a new scalar field, called localized quasi-(bi)harmonic field, and applied it to handle-based mesh 

deformation and Poisson-based mesh merging. The scalar field can control the influence region by varying a parameter, 

and save the effort for users to prescribe non-intuitive boundary constraints. However due to the time-consuming 

quadratic-program, the algorithm is not efficient for the interactive application. In the future, we will explore more 

efficient (approximate) solutions, e.g. utilizing ADMM method (Yang and Zhang, 2011) for acceleration and seek more 

applications of the localized quasi-(bi)harmonic field. 
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