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Abstract. In this paper, we retarget video stitching to an emerging is-
sue, named warping shake, when extending image stitching to video
stitching. It unveils the temporal instability of warped content in non-
overlapping regions, despite image stitching having endeavored to pre-
serve the natural structures. Therefore, in most cases, even if the in-
put videos to be stitched are stable, the stitched video will inevitably
cause undesired warping shakes and affect the visual experience. To
eliminate the shakes, we propose StabStitch to simultaneously realize
video stitching and video stabilization in a unified unsupervised learn-
ing framework. Starting from the camera paths in video stabilization,
we first derive the expression of stitching trajectories in video stitch-
ing by elaborately integrating spatial and temporal warps. Then a warp
smoothing model is presented to optimize them with a comprehensive
consideration regarding content alignment, trajectory smoothness, spa-
tial consistency, and online collaboration. To establish an evaluation
benchmark and train the learning framework, we build a video stitching
dataset with a rich diversity in camera motions and scenes. Compared
with existing stitching solutions, StabStitch exhibits significant superi-
ority in scene robustness and inference speed in addition to stitching
and stabilization performance, contributing to a robust and real-time
online video stitching system. The codes and dataset are available at
https://github.com/nie-lang/StabStitch.

Keywords: image/video stitching, video stabilization, warping shake

1 Introduction

Video stitching techniques are commonly employed to create panoramic or wide
field-of-view (FoV) displays from different viewpoints with limited FoV. Due
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Fig. 1: The occurrence and elimination of warping shakes. Left: stable camera trajecto-
ries for input videos. Middle: warping shakes are produced by image stitching, yielding
unsmooth stitching trajectories. Right: StabStitch eliminates these shakes successfully.

to their practicality, they are widely applied in autonomous driving , video
surveillance [37], virtual reality , etc. Our work lies in the most common
and challenging case of video stitching with hand-held cameras. It does not
require camera poses, motion trajectories, or temporal synchronization. It merges
multiple videos, whether from multiple cameras or a single camera capturing
multiple videos, to create a more immersive representation of the captured scene.

By contrast, image stitching has been studied much more profoundly, which
inevitably throws the question of whether existing image stitching solutions can
be extended to video stitching. Pursuing this line of thought, we initially leverage
existing image stitching algorithms to process hand-held camera videos.
Although the stitched results for individual frames are remarkably natural, there
is obvious content jitter in the non-overlapping regions between temporally con-
secutive frames, as shown in Fig. mid). It is also important to note that the jit-
ter does not originate from the inherent characteristics of the source video itself.
In fact, due to the advancements and widespread adoption of video stabilization
in both hardware and software nowadays, the source videos obtained from hand-
held cameras are typically stable unless deliberately subjected to shaking. For
clarity, we define such content jitter as warping shake, which describes the tem-
poral instability of non-overlapping regions induced by temporally non-smooth
warps, irrespective of the stability of source videos.

Existing video stitching solutions follow a strong as-
sumption that each source video from freely moving hand-held cameras suffers
from heavy and independent shakes. Consequently, every source video necessi-
tates stabilization via warping, contradicting the current prevalent reality that
video stabilization technology has already been widely integrated into various
portable devices (e.g., cellphones, DV cameras, and UAVs). In addition, these
approaches, to jointly optimize video stabilization and stitching, often establish
a non-linear iterative solving system consisting of various energy terms. Each
iteration involves several steps dedicated to optimizing different parameters sep-
arately, resulting in a rather slow inference speed and sophisticated optimization.

To solve the above issues, we present the first unsupervised online video
stitching framework (termed StabStitch) to realize video stitching and video sta-
bilization simultaneously. Building upon the current condition that source videos
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are typically stable, we simplify this task to stabilize the warped videos by re-
moving warping shakes as illustrated in Fig. [1] (right). To get stable stitching
warps, we generate the stitching trajectories drawing on the experience of camera
trajectories (i.e., Meshflow [33]) in video stabilization. By ingeniously combining
spatial and temporal warps, we derive the formulation of stitching trajectories in
the warped video. Next, a warp smoothing model is presented to simultaneously
ensure content alignment, smooth stitching trajectories, preserve spatial consis-
tency, and boost online collaboration. Diverging from conventional offline video
stitching approaches that require complete videos as input, StabStitch stitches
and stabilizes videos with backward frames alone. Besides, its efficient designs
further contribute to a real-time online video stitching system with only one
frame latency.

As there is no proper dataset readily available, we build a holistic video
stitching dataset to train the proposed framework. Moreover, it could serve as
a comprehensive benchmark with a rich diversity in camera motions and scenes
to evaluate image/video stitching methods. Finally, we summarize our principle
contributions as follows:

— We retarget video stitching to an emerging issue, termed warping shake, and
reveal its occurrence when extending image stitching to video stitching.

— We propose StabStitch, the first unsupervised online video stitching solution,
with a pioneering step to integrating video stitching and stabilization in a
unified learning framework.

— We propose a holistic video stitching dataset with diverse scenes and camera
motions. The dataset can work as a benchmark dataset and promote other
related research work.

2 Related Work

2.1 Image Stitching

Traditional image stitching methods usually detect keypoints [39] or line seg-
ments [54] and then minimize the projective errors to estimate a parameterized
warp by aligning these geometric features. To eliminate the parallax misalign-
ment [61], the warp model is extended from global homography transforma-
tion [2] to other elastic representations, such as mesh [60], TPS [26], super-
pixel |24], and triangular facet [25]. Meanwhile, to keep the natural structure of
non-overlapping regions, a series of shape-preserving constraints is formulated
with the alignment objective. For instance, SPHP [3] and ANAP [29] linearized
the homography and slowly changed it to the global similarity to reduce pro-
jective distortions; DFW [27], SPW [28], and LPC [15] leveraged line-related
consistency to preserve geometric structures; GSP [4] and GES-GSP [6] added
a global similarity before stitching multiple images together so that the warp of
each image resembles a similar transformation as a whole; etc. Besides, Zhang et
al. |62| re-formulated image stitching with regular boundaries by simultaneously
optimizing alignment and rectangling [12] [44].
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Recently, learning-based image stitching solutions emerged. They feed the en-
tire images into the neural network, encouraging the network to directly predict
the corresponding parameterized warp model (e.g., homography [42] 46| |17],
multi-homography [50], TPS [45] |20] |63], and optical flow [22] [14]). Compared
with traditional methods based on sparse geometric features, these learning-
based solutions train the network parameters to adaptively capture semantic
features by establishing dense pixel-wise optimization objectives. They show
better robustness in various cases, especially in the challenging cases where tra-
ditional geometric features are few to detect.

2.2 Video Stabilization

Traditional video stabilization can be categorized into 3D [31] [34], 2.5D [32] |7],
and 2D [41] [9] [40] methods, according to different motion models. The 3D so-
lutions model the camera motions in 3D space or require extra scene structure
for stabilization. The structure is either calculated by structure-from-motion
(SfM) [31] or acquired from additional hardware, such as a depth camera [34],
a gyroscope sensor [19], or a lightfield camera [49]. Given the intensive com-
putational demands of these 3D solutions, 2.5D approaches relax the full 3D
requirement to partial 3D information. To this end, some additional 3D con-
straints are established, such as subspace projection [32] and epipolar geome-
try |7]. Compared with them, the 2D methods are more efficient with a series
of 2D linear transformations (e.g., affine, homography) as camera motions. To
deal with large-parallax scenes, spatially varying motion representations are pro-
posed, such as homography mixture [8], mesh [35], vertex profile [33], optical
flow [36], etc. Moreover, some special approaches focus on specific input (e.g.,
selfie [58] [59], 360 [21] [53], and hyperlapse |18] videos).

In contrast, learning-based video stabilization methods directly regress unstable-
to-stable transformation from data. Most of them are trained with stable and
unstable video pairs acquired by special hardware in a supervised manner [55|
[56] 164]. To relieve data dependence, DIFRINT [5] proposed the first unsu-
pervised solution via neighboring frame interpolation. To get a stable interpo-
lated frame, only stable videos are used to train the network. Different from it,
DUT [57] established unsupervised constraints for motion estimation and tra-
jectory smoothing, learning video stabilization by watching unstable videos.

2.3 Video Stitching

Video stitching has received much less attention than image stitching. Early
works [16] [48] stitched multiple videos frame-by-frame, and focused on the tem-
poral consistency of stitched frames. But the input videos were captured by
cameras fixed on rigs. For hand-held cameras with free and independent mo-
tions, there is a significant increase in temporal shakes. To deal with it, videos
were first stitched and then stabilized in [11], while [30] did it in an opposite
way (e.g., videos were firstly stabilized, and then stitched). Both of them accom-
plished stitching or stabilization in a separate step. Later, a joint optimization
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Fig. 2: The overview of StabStitch. We first obtain stitching trajectories by integrating
spatial and temporal warps. Then the stitching trajectories are optimized by the warp
smoothing model to produce unsmooth-to-smooth stitching warps.

strategy was commonly adopted in , where further considered
the dynamic foreground by background identification. However, solving such a
joint optimization problem regarding stitching and stabilization is fragile and
computationally expensive. To this end, we rethink the video stitching problem
from the perspective of warping shake and propose the first (to our knowledge)
unsupervised online solution for hand-held cameras.

3 StabStitch

We first describe the camera trajectories in video stabilization and then further
derive the expression of stitching trajectories in video stitching. Afterward, the
unsmooth trajectories are optimized to realize both stitching and stabilization.
The pipeline of StabStitch is exhibited in Fig. [2|

3.1 Camera Trajectory

Temporal Warp: To obtain camera paths, a temporal warp model is first
proposed to represent the temporal motion between consecutive video frames.
Different from most video stabilization works that use point cor-
respondences to estimate the warp, we leverage a convolutional neural network
to capture the high-level information in inter-frame motions. This alternative
proves to be robust across various scenarios, particularly in low-light and low-
texture environments. The network structure is similar to the warp network of
UDIS++ [45]. As shown in Fig. [2[left), it takes two consecutive target frames
as input and outputs the motions of mesh-like control points m(t) [1]. Due to
the temporal continuity of adjacent frames in the video, the estimated motions
are often not significant. Consequently, we replace all global correlation lay-
ers in UDIS++ with local correlation layers (i.e., cost volume [52]). To
improve the efficiency, we substitute the ResNet50 backbone in UDIS++
with ResNet18 and reduce network parameters accordingly. Following UDIS++-,
our optimization objective also consists of an alignment term and a distortion
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term, as described in the following equation:
Etmp = ‘calignment + )\“npﬂdistortion- (1>

The alignment component leverages photometric errors to implicitly supervise
control point motions. The distortion component is composed of an inter-grid
constraint and an intra-grid constraint. For brevity, we refer the readers to the
supplementary for more details.

Meshflow: The camera paths can be defined as a chain of relative motions,
such as Euclidean transformations [34], homography transformations [35|, etc.
Representing the transformation of the initial frame as an identity matrix F'(1),
the camera trajectories are written as:

Ct) = F()F(2)--- F(t), (2)

where F(t) is the relative transformation from the ¢-th frame to the (¢t — 1)-th
frame. Considering that our temporal warp model directly predicts the 2D mo-
tions of each control point, we adopt the motion representation of vertex files like
MeshFlow [33]. Particularly, we chain the motions of each control point i tempo-
rally as the control point trajectory for a more straightforward representation:

Ci(t) = mi(1) +m4(2) + - - - +my(t), (3)

where m;(1) is set to zero. Note each control point in m(t) is anchored at every
vertex in a rigid mesh.

3.2 Stitching Trajectory

Compared with video stabilization, video stitching is more challenging with two
or more videos as input and requires the stitched video to possess coherently
smooth camera trajectories for the contents from different videos.

Spatial Warp: To obtain the stitching trajectories, in addition to the tempo-
ral warp model, we also establish a spatial warp model to represent the spatial
motion between different video views, as shown in Fig. [J[left). The spatial warp
model has a similar network structure to the temporal warp model except that
the first local correlation layer is replaced by a global correlation layer [43] to cap-
ture long-range matching (usually longer than half of the image width/height).
Considering the significance of spatial warping stability in video stitching, we
expect this warp to be as robust as possible, although this network model has
been proven to be more robust than traditional methods. To this end, we fur-
ther introduce a motion consistency term in addition to the basic optimization
components of the temporal warp:

(U+1)x(V+1)
1 s
ﬁconsis. = Z ||ml(t) - ml(t - 1) —H pt||2, (4)

(U+1)x (V+1) Pl
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where P! is the maximum tolerant motion difference and (U + 1) x (V + 1)

denotes the number of control points. We further sum up the total optimization
goal as:

spt spt spt
L = Ealignment + A®P Edistortion +w P ‘Cconsis.' (5)

Refer to the ablation studies or supplementary for the impact of Loy sis. -

Stitch-Meshflow: Video stabilization leverages the chain of temporary motions
as camera paths, whereas in our video stitching system, how should we represent
the stitching paths of a warped video? We dig into this problem by combining
the spatial and temporal warp models. With these two models, we first reach the
spatial /temporal motions (m®/m7T € R2*W+Ux(V+D) and their corresponding
meshes (M /M7 € R2>*UFDx(VHD) ag follows:

m” (t) = TNet(I},;' I},;) = M7 (t) = M7 4 mT (1),

tgt »
mS(t —1) = SNet(I} 1, I1,;') = M®(t —1) = M™ +m(t —-1),  (6)
mS(t) = SNet(I}z,1{y) = M5(t) = MT9 4 mS(t),

where I,.cr/I1ge € REOH*W ig the reference/target frame, SNet/T Net(-,-) rep-
resents the spatial /temporal warp model, and M9 ¢ R2*(U+D)x(V+1) ig defined
as the 2D positions of control points in a rigid mesh.

Then we need to derive the stitching motion of the warped video from the
spatial/temporal meshes. To align the ¢-th frame with the (¢ — 1)-th frame in
the warped video, the temporal mesh from the ¢-th frame to the (¢t —1)-th frame
in the source video (M7 (¢)) should also undergo the same transformation as the
spatial warp of the (t —1)-th frame (M (t —1)). Assuming 7 (-) is the thin-plate
spline (TPS) transformation, the desired stitching motion could be represented
as the difference between the desired mesh and the actual spatial mesh (M*®(t)):

s(t) = Tarriaars -1y (M7 (t)) — MS(2). (7)

Finally, we attain the stitching paths (we also call it Stitch-Meshflow) by chaining
the relative stitching motions between consecutive warped frames as follows:

Si(t) = si(1) +8i(2) + -+ si(t), (8)

where we define s(1) is an all-zero array.

3.3 Warp Smoothing

To get a temporally stable warped video, we need to smooth the stitching tra-
jectories as well as preserve their spatial consistency. Besides, we should also try
to prevent the degradation of alignment performance in overlapping areas.
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Achitecure: In this stage, a warp smoothing model is designed to achieve the
above goals. As depicted in Fig. [2] it takes sequences of (N frames) stitching
paths (S), spatial meshes (M), and overlapping masks (OP) as input, and
outputs a smoothing increment (A) as described in the following equation:

A = SmoothNet(S, M*,OP), (9)

where S/M®/OP € RP>*N*(U+Dx(VHL) " OP are binary mask sequences (1/0
indicates the vertex inside/outside overlapping regions). We calculate it by de-
termining whether each control point in M*° exceeds image boundaries.

The smoothing model first embeds S, M*°, and OP into 32, 24, and 8 chan-
nels through separate linear projections, respectively. Then these embeddings
are concatenated and fed into three 3D convolutional layers to model the spa-
tiotemporal dependencies. Finally, we reproject the hidden results back into 2
channels to get A. The network architecture is designed rather simply to accom-
plish efficient smoothing inference. In addition, this simple architecture better
highlights the effectiveness of the proposed unsupervised learning scheme.

With the smoothing increment A, we define the smooth stitching paths as:

S=8+A. (10)

Furthermore, if we expand Eq. [I0] based on Eq. 8 and Eq. [7] we obtain:

S(t) = S(t—1) + s(t) + A(t)
=S5t = 1) + Tagmiosns -1y (M7 (1)) = (M3(t) — A(t)) . (11)
—_———

Smooth spatial mesh

In this case, the last term in Eq. [L1]can be regarded as the smooth spatial mesh
M?(t). Therefore, the sequences of smooth spatial meshes are written as:

M =M% — A (12)

Objective Function: Given original stitching paths (S) and smooth stitch-
ing paths (5’), smooth spatial meshes (MS), and overlapping masks (OP), we
design the unsupervised learning goal as the balance of different optimization
components:

smooth smooth smooth
L - Edata + A ‘Csmothness +w ['space~ (13)

Data Term: The data term encourages the smooth paths to be close to the
original paths. This constraint alone does not contribute to stabilization. The
stabilizing effect of StabStitch is realized in conjunction with the data term
and the subsequent smoothness term. To maintain the alignment performance
of overlapping regions during the smoothing process as much as possible, we
further incorporate the awareness of overlapping regions into the data term as

follows: .
Laata = [|(S = S)(@OP + 1)z, (14)
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Fig. 3: The online stitching mode. We define a sliding window to process a short
sequence and display the last frame on the online screen.

where « is a constant to emphasize the degree of alignment.

Smoothness Term: In a smooth path, each motion should not contain sudden
large-angle rotations, and the amplitude of translations should be as consistent
as possible. To this end, we constrain the trajectory position at a certain moment
to be located at the midpoint between its positions in the preceding and suc-
ceeding moments, which implicitly satisfies the above two requirements. Hence,
we formulate the smoothness term as:

(N-1)/2
Lomothness = Y BillS(mid + j) + S(mid — j) - 25(mid) |2, (15)
j=1

where mid is the middle index of N (N is required to be an odd number) and
B; is a constant between 0 and 1 to impose varying magnitudes of smoothing
constraints on trajectories at different temporal intervals.

Spatial Consistency Term: When there are only data and smoothness constraints,
the warping shakes can be already removed. But each trajectory is optimized
individually. Actually, our system has (U + 1) x (V 4 1) control points, which
means there are (U + 1) x (V 4 1) independently optimized trajectories. When
these trajectories are changed inconsistently, significant distortions will be pro-
duced. To remove the distortions and encourage different paths to share similar
changes, we introduce a spatial consistency component as:

N
1 orS
[/space - N ;Edistm‘tion(M (t))a (16)
where Lg;stortion () takes a mesh as input and calculates the distortion loss like

the spatial /temporal warp model.

4 Online Stitching

Existing video stitching methods are offline solutions, which
smooth the trajectories after the videos are completely captured. Different from
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them, StabStitch is an online video stitching solution. In our case, the frames
after the current frame are no longer available and real-time inference is required.

4.1 Online Smoothing

To achieve this goal, we define a fixed-length sliding window (NN frames) to
cover previous and current frames, as shown in Fig. 3] Then the local stitching
trajectory inside this window is extracted and smoothed according to Sec.
Next, the current target frame is re-synthesized using the optimized smooth
spatial mesh (Eq. . Finally, we blend it with the current reference frame to
get a stable stitched frame and display the result when the next frame arrives.
With this mode and efficient architectures, StabStitch achieves minimal latency
with only one frame.

Online Collaboration Term: However, such an online mode could introduce a
new issue, wherein the smoothed trajectories in different sliding windows (with
partial overlapping sequences) may be inconsistent. This can produce subtle
jitter if we chain the sub-trajectories of different windows. Therefore, we design
an online collaboration constraint besides the existing optimization goal (Eq.

13):
1 N
_— 8@ (1) — SE (1 - !
Eonlme N _1 v HS (t> S (t 1)”2’ ( 7)

where £ is the absolute time ranging from N to the last frame of the videos.
By contrast, t can be regarded as the relative time in a certain sliding window
ranging from 1 to N.

4.2 Offline and Online Inference

Offline smoothing takes the whole trajectories as input, outputs the optimized
whole trajectories, and then renders all the video frames. It carries on smoothing
after receiving whole input videos and can be regarded as a special online case
in which the sliding window covers whole videos. By contrast, online smoothing
takes local trajectories as input, outputs the optimized local trajectories, and
then renders the last frame in the sliding window. The online process smoothes
current paths without using any future frames.

5 Dataset Preparation

We establish a dataset, named StabStitch-D, for the comprehensive video
stitching evaluation considering the lack of dedicated datasets for this task. Our
dataset comprises over 100 video pairs, consisting of over 100,000 images, with
each video lasting from approximately 5 seconds to 35 seconds. To holistically
reveal the performance of video stitching methods in various scenarios, we cat-
egorize videos into four classes based on their content, including regular (RE),
low-texture (LT), low-light (LL), and fast-moving (FM) scenes. In the testing
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Fig. 4: The proposed StabStitch-D dataset with a large diversity in camera motions
and scenes. We exhibit several video pairs for each category.

split, 20 video pairs are divided for testing, with 5 videos in each category. Fig.
[ illustrates some examples for each category, where FM is the most challenging
case with fast irregular camera movements (rotation or translation). The reso-
lution of each video is resized into 360 x 480 for efficient training, and in the
testing phase, arbitrary resolutions are supported.

6 Experiment

6.1 Details and Metrics

Details: We implement the whole framework in PyTorch with one RTX 4090Ti
GPU. The spatial warp, temporal warp, and warp smoothing models are trained
separately with the epoch number set to 55, 40, and 50, respectively. AX'™P, Pt
1Pt and wP? are defined as 5, 10, 20, and 0.1. The weights for data, smoothness,
spatial consistency, and online collaboration terms are set to 1, 50, 10, and 0.1.
a, B, B2, and B3 are set to 10, 0.9, 0.3, and 0.1. The control point resolution
and sliding window length are set to (6 + 1) x (8 + 1) and 7. Moreover, when
training the warp smoothing model, we randomly select N = 7 frames as the
processing window from a larger buffer of 12 frames, which could allow more
diverse stitching paths.

Metrics: To quantitatively evaluate the proposed method, we suggest three met-
rics including alignment score, distortion score, and stability score. Lim-
ited by space, we moved the related metric details to the supplementary.

6.2 Compared with State-of-The-Arts

We compare our method with image and video stitching solutions, respectively.

Compared with Image Stitching: Two representative SoTA image stitch-
ing methods are selected to compare with our solution: LPC (traditional
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Table 1: Quantitative comparisons with image stitching methods on StabStitch-D
dataset. * indicates the model is re-trained on the proposed dataset.

Method Regular Low-Light  Low-Texture Fast-Moving Average

1~ LCP [15] 24.22/0.812 R R 23.88/0.813 R

2 UDIS++ [45]  23.19/0.785  31.09/0.936  29.98/0.906  21.56/0.756 27.19/0.859
3 UDIS++ * [45| 24.63/0.829  34.26/0.957 32.81/0.920 24.78/0.819 29.78/0.891
4 StabStitch ~ 24.64/0.832 34.51/0.958 33.63/0.927 23.36/0.787 29.89/0.890

Table 2: User study on the cases that Nie et al. [47] successes, in which the user
preference rate is reported. We exclude the failure cases of Nie et al. |[47] for fairness.

StabStitch Nie et al. [47] No preference
30.47% 6.25% 63.28%

method) and UDIS++ [45] (learning-based method). The quantitative compari-
son results are illustrated in Tab. [1} where ‘-/-” indicates the PSNR /SSIM values.
‘-” implies the approach fails in this category (e.g., program crash and extremely
severe distortion). The results show our solution achieves comparable alignment
performance with SoTA image stitching methods. In fact, our spatial warp model
has surpassed UDIS++ as indicated in Tab.[d] StabStitch sacrifices a little align-
ment performance to reach better temporally stable sequences.

Compared with Video Stitching: We compare our method with Nie et al.’s
video stitching solution [47]. To our knowledge, it is the latest and best video
stitching method for hand-held cameras. Based on the assumption that the input
videos are unstable, it estimates two respective non-linear warps for the reference
and target video frame. In contrast, we hold the assumption that currently input
videos are typically stable unless deliberately subjected to shaking. Only the
target video frame is warped in our system. This difference between Nie et al. [47]
and our solution makes the comparison of PSNR/SSIM not completely fair.
Therefore, we conduct a user study as an alternative and demonstrate extensive
stitched videos in our supplementary video.

User Preference: Nie et al.’s solution [47] is sensitive to different scenes. In our
testing set (20 pairs of videos in total), Nie et al. [47] fail in 10 pairs of videos
because of program crashes (mainly appearing in the categories of LL and LT).
Hence, we exclude these failure cases and conduct the user study only on the
successful cases. For a stitched video, different methods may perform differently
at different times. So, we segment each complete stitched video into one-second
clips (we omit the last clip of a stitched video that is shorter than one second in
practice), resulting in 128 clips in total. Then we invite 20 participants, including
10 researchers/students with computer vision backgrounds and 10 volunteers
outside this community. In each test session, two clips from different methods
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Fig. 5: Qualitative comparison with Nie et al.’s video stitching on a regular case
(top) and a fast-moving case (bottom). The numbers below the images indicate the
time at which the frame appears in the video. Please zoom in for the best view.

Table 3: A comprehensive analysis of inference speed (/ms).

SNet TNet Trajectory generation SmoothNet Warping Blending Total
11.5 10 1.1 1 4.4 0.2 28.2

are presented in a random order, and every volunteer is required to indicate
their overall preference for alignment, distortion, and stability. We average the
preference rates and exhibit the results in Tab. 2] From that, our results are
more preferred by users. Besides, we illustrate two qualitative examples in Fig.
where our results show much fewer artifacts (refer to our supplementary video
for the complete stitched videos).

Inference Speed: A comprehensive analysis of our inference speed is shown in Tab.
[3]with one RTX 4090Ti GPU, where ‘Blending’ represents the average blending.
In the example shown in Fig. top), StabStitch only takes about 28.2ms to stitch
one frame, yielding a real-time online video stitching system. When stitching a
video pair with higher resolution, only the time for warping and blending steps
will slightly increase. In contrast, Nie et al.’s solution takes over 40 minutes
to get such a 26-second stitched video with an Intel i7-9750H 2.60GHz CPU,
making it impractical to be applied to online stitching.

6.3 Ablation Study

Quantitative Analysis: The main ablation study is shown in Tab.[d] where ‘Basic
Stitching’ (model 1) refers to the spatial warp model without the motion con-
sistency term Leonsis.. With Leonsis. (model 2), the stability is improved. With
the warp smoothing model (model 3), both the distortion and stability are sig-
nificantly optimized at the cost of slight alignment performance, achieving an
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Table 4: Ablation studies on alignment, distortion, and stability.

Basic Stitching Leconsis. Warp Smoothing Alignment T Distortion | Stability |

1 v 30.67,/0.902 0.784 81.57
2 v v 30.75/0.903 0.804 60.32
3 v v v 29.89/0.890 0.674 48.74
400 Input Video 4001 Model 1
3504 Model 2 ;
‘g‘zoo \ % 2001 = \
& 7 X & 150 7
100 / 1001 //
‘j/ 501 /[~

[ 100 200 300 400 500 600 700 800 [ 00 200 300 400 500 600 700 800
Frame Frame

Fig. 6: Left: camera trajectories of the original target video. Right: stitching trajecto-
ries of the warped target video from different models (the model index corresponds to
the experiment number in Tab. .

optimal balance of alignment, distortion, and stability. More experiments can be
found in the supplementary materials.

Trajectory Visualization: We visualize the trajectories of the original target video
and warped target videos in Fig. [f] Here, the trajectories are extracted from a
control point of the example shown in Fig. (top) in the vertical direction. It can
be observed that even if the input video is stable, image stitching can introduce
undesired warping shakes, whereas StabStitch (Model 3) minimizes these shakes
as much as possible during stitching.

7 Conclusions

Nowadays, the videos captured from hand-held cameras are typically stable due
to the advancements and widespread adoption of video stabilization in both
hardware and software. Under such circumstances, we retarget video stitching
to an emerging issue, warping shake, which describes the undesired content in-
stability in non-overlapping regions especially when image stitching technology
is directly applied to videos. To solve this problem, we propose the first unsu-
pervised online video stitching framework, StabStitch, by generating stitching
trajectories and smoothing them. Besides, a video stitching dataset with various
camera motions and scenes is built, which we hope can work as a benchmark and
promote other related research work. Finally, we conduct extensive experiments
to demonstrate our superiority in stitching, stabilization, robustness, and speed.
Acknowledgments: This work was supported by the National Natural Sci-
ence Foundation of China (No. 62172032), and Zhejiang Province Basic Public
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