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Abstract There is a steadily growing range of
applications that can benefit from facial reconstruction
techniques, leading to an increasing demand for
reconstruction of high-quality 3D face models. While
it is an important expressive part of the human
face, the nose has received less attention than other
expressive regions in the face reconstruction literature.
When applying existing reconstruction methods to
facial images, the reconstructed nose models are often
inconsistent with the desired shape and expression.
In this paper, we propose a coarse-to-fine 3D nose
reconstruction and correction pipeline to build a nose
model from a single image, where 3D and 2D nose curve
correspondences are adaptively updated and refined. We
first correct the reconstruction result coarsely using
constraints of 3D–2D sparse landmark correspondences,
and then heuristically update a dense 3D–2D curve
correspondence based on the coarsely corrected result. A
final refinement step is performed to correct the shape
based on the updated 3D–2D dense curve constraints.
Experimental results show the advantages of our method
for 3D nose reconstruction over existing methods.
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1 Introduction
Faces have a high degree of freedom to allow humans
to express emotions, making the reconstruction of
facial geometry from 2D images difficult. Despite the
vast amount of work that attempts to utilize a large
photo collection to resolve ambiguities when building
the 3D geometry of faces, accurately reconstructing
a face model from a single 2D image still remains
challenging. 3D morphable model (3DMM) based
fitting techniques are normally used when we only
have access to a single facial image. They work to
match the reconstructed 3D face mesh with the 2D
contours in a facial image, including those of the face,
eyes, and nose. In applications using dynamic facial
models, such as facial motion re-targeting, researchers
mainly focus on the reconstruction quality of parts
with frequent movement, like the eyes and mouth;
little attention has been paid to the nose. However,
with the steadily growing range of applications that
can benefit from face reconstruction techniques, the
demand for accurate reconstruction of nose shapes
is increasing. For example, face re-lighting requires
a precise nose shape to produce a natural lighting
effect in the area surrounding the nose. When
creating virtual avatars in computer games, the
nose shape needs to be customized by automatically
manipulating bone controllers to match the input
selfie. The ability to reconstruct recognizable 3D
nose shapes is also important to improve recognition
accuracy [1, 2], used, e.g., for 3D face unlocking of
smart phones.

It is non-trivial to reconstruct accurate and
identifiable 3D nose shapes from single images. There
are two major challenges. On the one hand, 3D
parametric face models (such as 3DMM) are unable
to represent complex and diverse nose shapes due to
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their limited representational power; on the other
hand, more importantly, it is more difficult to
establish sufficient feature constraints in the nose
region than in the regions of eyes, mouth, and facial
silhouette. To deal with the first challenge, previous
works mainly use non-parametric deformation to
correct the parametric reconstruction for further
model enhancement [3–5]. However, they focus on
only correcting the shape of the whole face, not
just the nose, and their sparse landmarks and dense
pixels are not semantically informative enough to
represent various nose shapes. Recently, Tang et
al. [6] introduced dense semantic curve constraints
for 3D face reconstruction and correction, which
makes the reconstructed mesh better match the face
contours in the input image. However, their method
mainly works for expressive face regions, such as
eyebrows, eyes, and mouth, where the curve features
are simple and salient, as shown in the middle row
of Fig. 1. In the nose region, the curves can be very
complex and diverse due to variations in shape and
perspective, leading to erroneous matching between
a pre-defined 3D nose contour and the nose contour
on the 2D input image. Finally, compared with
eye and mouth regions, 2D curve features on nose
regions are less salient due to the similarity in color
to neighboring regions: both face and nose have the
color of the skin.

To tackle the aforementioned problems, we
propose a coarse-to-fine 3D nose reconstruction and
correction method, in which 3D and 2D nose curve
correspondences can be adaptively updated and
refined. Although correct dense correspondences
between 3D and 2D nose curves are not easy to
establish, it is observed that sparse landmarks
of 3D and 2D nose shapes can be accurately
established to support the reconstruction. Based
on this observation, our idea is to use the sparsely
reconstructed result to guide the estimation of the
dense 3D–2D correspondences. We first correct
the reconstruction result coarsely using constraints
on 3D–2D sparse landmark correspondences, and
then heuristically update dense 3D–2D curve
correspondences based on the coarsely corrected
result. A final refinement step is performed to correct
the shape based on the updated dense 3D–2D curve
constraints.

There are three problems to be solved for effectively

Fig. 1 Top: input images. Middle: baseline 3D face reconstruction
without nose correction [6]. Bottom: our 3D face reconstruction with
nose correction.

updating dense 3D–2D curve correspondences:
(i) how to determine the 3D nose contour, due
to self-occlusion and variations in nose shape and
pose, (ii) how to extract a precise 2D nose contour
using the non-salient curve features of the boundary
of the nose region, and (iii) how to establish
accurate correspondences between the 3D and 2D
nose contours. To extract 3D contours, Tang et al. [6]
used predefined vertex indices on a template mesh
as a fixed 3D nose contour, but this method is not
flexible for varied nose shapes and poses. Instead, we
render the sparsely corrected nose into a depth map,
which can naturally form self-occlusion edges. We
heuristically use this edge as the 3D nose contour to
update. For 2D contour extraction, Tang et al. [6]
applied snakes [7] on a feature map, but the curve
features here are not distinctive enough. We produce
an enhanced feature map using an RGB-D foreground
enhancement method [8], where we render a depth
map using the sparsely corrected 3D face mesh. Then
a snake is able to extract a more accurate 2D contour.
To determine 3D–2D contour correspondences, we
integrate 3D contour information with 2D contour
extraction, rather than dealing with them separately
as in Ref. [6]. Specifically, we initialize the active
contour in the snake algorithm using the projection
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of the heuristically determined 3D contour. In this
way, no matter how complex the 3D nose curve is,
proper correspondences can be preserved. In contrast,
the matching method used in Ref. [6] may produce
erroneous correspondences when the curve is complex.

We believe our work to be the first to reconstruct
accurate 3D noses from single images. Experiments
show that our method outperforms the state-of-the-
art. We make the following technical contributions:
• a coarse-to-fine 3D nose reconstruction approach,

which can adaptively and heuristically build and
correct dense 3D–2D nose contour correspon-
dences to adapt to different face poses and nose
shapes, and

• an improved 2D nose contour feature detection
method integrating the RGB-D foreground
enhancement method.

2 Related work
Low-dimensional parametric 3D face models [9–16]
are widely used for 3D face reconstruction for their
simplicity, compactness, and effectiveness. However,
limited by the wide range of types of models and their
formats in model databases, low-dimensional models
cannot be used to reconstruct sufficiently accurate
face shapes, especially when the face greatly differs
from those in the model database. Therefore, it is a
necessary step to further correct the reconstructed
low-dimensional 3D faces to better match the input
data.

Numerous studies [3, 4, 17] have investigated how
to use Laplacian deformation [18] to correct low-
dimensional 3D face reconstruction results. Their idea
is to correct the position of each vertex in a high-
dimensional feature space to better match the input
data, where the local structure is maintained by a
Laplacian coordinate regularization term. Li et al. [3]
used RGB-D data to correct the whole face, and
correct the nose depending on the dense depth data,
which is however unavailable when only a single image
can be accessed. Thus, for single image input, Li et
al. [4] approximately converted detected 2D sparse
landmarks to 3D space to correct the whole face.
However, sparse landmarks in the nose area are not
dense enough to describe the nose shape, and the
corrective effect is thus limited. For video input,
Garrido et al. [17] corrected the whole face based
on dense optical flow constraints, but the optical

flow calculation depends on having video input and
is not applicable for single image input. As high
dimensional Laplacian deformation [18] in vertex
space has a high computational cost and is not robust
to noise, some researchers have suggested [5, 17, 19]
solving Laplacian deformation in a low-dimensional
subspace [20] to speed up the computation and/or
reduce noise. In work like that of Li et al. [3] and
Bouaziz et al. [19], producing corrected meshes relies
on depth data, which is again not applicable to a
single image. For single image input, a series of
recent studies has indicated that the deformation
problem can be solved by utilizing the dense pixel
difference between the rendered image and input
image [5, 17]. However, it needs to solve parametric
albedo and illumination models at the same time,
so is also greatly affected by the representational
power of the parametric illumination and albedo
model. Pixel level dense constraints (depth or
image pixels) are usually used to supplement sparse
landmark constraints, and are especially suitable
to represent medium level wrinkle deformations in
skin regions such as the forehead and cheek, where
sparse landmark constraints cannot model them well.
On the other hand, pixel level dense constraints
usually contain a lot of noise and do not show salient
contour-level semantic features, so cannot correct
feature regions properly. In addition, although low-
dimensional subspace Laplacian deformation [20] is
more efficient and smooth, the deformation is limited
to a narrow range.

The above works aim to correct the whole face
to fit the sparse or dense input data. However,
in their reconstructed results, local feature regions
such as the eyes, mouth, and nose are still not
identifiable or expressive enough. Compared to sparse
landmarks and dense pixel features, contour features
contain more semantic information so can model
parts of the face better, and thus can be used to
further correct local shapes. For eyelid correction,
Wen et al. [21] built a parametric eyelid model to
fit the extracted 2D eyelid contour, but their 2D
eyelid contour extraction relies on manually labeled
data for training. For lip correction, Garrido et
al. [22] learned a mapping from inaccurate 3D lips
to accurate 3D lips. But the accurate 3D lip data
set needs to be collected and processed by complex
and expensive equipment, and they also required
manually labeled data to train the 2D lip contour
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extraction model. Dinev et al. [23] also corrected lips
using a data-driven method. Differing from Ref. [22],
they constructed a training dataset using lightweight
Laplacian deformation techniques [18]. However, they
need to manually extract the 2D lip contour, and
sometimes need to heuristically label lips due to
occlusion between upper and lower lips. All the above
correction methods involve some manual intervention
for 2D contour extraction; more lightweight and fully
automatic 2D contour extraction methods would
be preferable to reduce the manual burden. More
recently, Tang et al. [6] proposed a lightweight 2D
contour extraction approach to correct local facial
features. When extracting 2D contour, they used a
local-to-global snake algorithm [7] to refine the initial
connection lines between landmarks. However, their
method is more suitable for eye and mouth regions
where the features are salient and simple. It does not
work well for noses because of their more complex
shape.

To the best of our knowledge, no previous
works target to correct nose reconstruction in
the field of single-image-based facial reconstruction.
Compared to eye and lip correction [21–23], it is
more challenging to establish accurate dense 3D–2D
contour correspondences for nose correction. To deal
with this challenge, we couple 3D reconstruction and
2D feature extraction instead of dealing with them

separately [21–23], which effectively improves the
dense 3D–2D nose correspondence. In our approach,
in order to allow a flexible 3D nose contour for
varied face poses and nose shapes, we heuristically
refine the 3D nose contour in a coarse-to-fine scheme
during reconstruction. To mitigate the ambiguity
when extracting the 2D nose contour using less
salient curve features, we combine the reconstructed
depth information to improve 2D contour extraction
instead of extracting features based only on 2D
input data [6, 21, 22]. For 3D–2D one-to-one
contour correspondences, as the iterative closest point
(ICP) method may find wrong correspondences for
complex nose shapes, we implicitly preserve correct
correspondence by deforming the 2D projection of
the 3D nose contour to produce the final 2D contour
using a snake algorithm [7].

3 Method
3.1 Overview
Previously, single-image-based 3D face reconstruction
commonly encountered difficulties in reconstructing
accurate and identifiable 3D nose shapes. In this
paper, we propose and develop a method which
makes the reconstructed 3D nose accurately match
the 2D nose contour in the input image, as shown in
Fig. 2. The key challenge in 3D nose reconstruction

Fig. 2 Pipeline of proposed 3D corrective nose reconstruction method.
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is to establish sufficiently accurate 3D–2D feature
correspondences that can adapt to varied face poses
and nose shapes. Our basic idea is to update the 3D
nose shape MN

i and the 3D–2D nose correspondence
CN

i in a coarse-to-fine manner. In the process, the
3D–2D correspondence is heuristically updated based
on 3D nose shape changes. Then, the 3D nose
shape is iteratively refined based on the updated nose
correspondences. Overall, the process has three stages:
basic nose reconstruction, sparse nose correction, and
dense nose correction.

The mathematical notation used in this paper is
summarized in Table 1. The nose reconstruction
process is formulated as a three-stage optimization

Table 1 Notation

Notation Description
Camera
P camera parameters, including P = {P r, R, t}
P r weak perspective projection matrix
R rotation matrix
t translation vector
Π obtain projected 3D point in image space
Πxy obtain 2D position (x–y components) of projected 3D

point
Πz obtain depth value (z component) of projected 3D point
Image
I input face image
IN nose region of input face image (N indicates “Nose”)
F N

1 enhanced nose feature map during first optimization
stage

Mesh

M target 3D face mesh to be found
Mi 3D face mesh found by optimization stage i

MN
i nose region of 3D face mesh found by optimization

stage i

DN
i rendered nose depth map of 3D face mesh in

optimization stage i

Correspondences
LA correspondence of all 3D–2D sparse landmarks (A

indicates “All”)
LN correspondence of nose 3D–2D sparse landmarks
CN target 3D–2D dense nose correspondences to be found
CN

i 3D–2D dense nose correspondence result of stage i

CA
i 3D–2D dense face correspondence result of stage i

CA−N
i 3D–2D dense correspondence result for face excluding

nose, for stage i

Operation
Φline

2D generate 2D nose contour by connecting landmarks
Φcontour

2D update 2D nose contour using snake
Φcontour

3D extract 3D nose contour from depth map
F obtain enhanced feature map using RGB-D image

problem with the following objective:
E(P, M, CN ) = σ0Ebasic(P, M, CN )

+ σ1Esparse(MN , CN )
+ σ2Edense(MN , CN ) (1)

where the targets to be determined include camera
parameters P , the 3D face mesh M (with nose
part MN ), and 3D–2D nose correspondences CN .
CN = (CN,2D, CN,3D) contains one-to-one nose corre-
spondences between the 2D point set CN,2D and the
3D mesh vertex set CN,3D. In each reconstruction
stage, only a single energy term in Eq. (1) is activated.
We now consider each stage.

(1) Basic nose reconstruction stage. In this stage,
an initial 3D nose is reconstructed with energy weights
σ0 = 1, σ1 = 0, σ2 = 0. The optimization objective
is E(P, M, CN ) = Ebasic(P, M, CN )[LA, CA−N

0 ] [6],
where camera parameters P , whole face mesh M , and
nose correspondence CN are all found based on all
3D–2D sparse correspondences LA = (LA,2D, LA,3D)
and partial 3D–2D dense correspondences CA−N

0 =
(CA−N,2D

0 , CA−N,3D
0 ) (excluding the nose dense

correspondences, as they are not accurate yet). This
stage outputs the basic 3D nose shape MN

0 and 3D–
2D nose dense correspondences CN

0 .
(2) Sparse nose correction stage. In this stage,

we refine the results of the first stage using energy
weights σ0 = 0, σ1 = 1, σ2 = 0. The optimization is
formulated as E(P, M, CN ) = Esparse(MN , CN )[LN ],
where camera parameters P are fixed, and only 3D
nose shape MN and nose correspondence CN are
determined. The nose 3D–2D sparse correspondence
LN = (LN,2D, LN,3D) is used as a constraint. This
stage outputs the roughly corrected 3D nose MN

1 and
updated nose correspondence CN

1 .
(3) Dense nose correction stage. In this stage, we

further refine the second stage results, with energy
weights σ0 = 0, σ1 = 0, σ2 = 1. The optimization
becomes E(P, M, CN ) = Edense(MN , CN )[CN

2∗ ],
where we first update the nose correspondences from
CN

1 to CN
2∗ as energy constraints, and then solve

for the 3D nose shape MN and update the nose
correspondences CN , giving the final results MN

2 and
CN

2 .
We use the 3D face model from Ref. [12] for

reconstruction. In this model, a 3D face mesh can be
represented in two forms, in high-dimensional space
and low-dimensional space. In the former, a 3D face
is represented by all of its vertices, while in the latter,
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it is represented by a small number of parameters.
In the basic nose reconstruction stage, the 3D face
mesh M is first obtained in the low-dimensional
space, which is represented by the following set of
parameters: M(α, β) = Mmean +Bid ·α+Bexp ·β [12],
where α and β represent identity and expression
parameters respectively. In all three stages, the
3D face mesh is corrected in the high-dimensional
space. The face mesh is represented in the form
of a high-dimensional vector of vertex positions:
M(V ) = {vi}n

i=1, where vi is the 3D position of the
i-th vertex.

In the basic nose reconstruction stage, the camera
parameters P are determined and fixed; in the next
two stages, P is used to inversely project 2D points
in image space to 3D space. P is represented by
{Pr, R, t}, including a weak perspective projection
matrix Pr, a rotation matrix R, and a translation
vector t. We formulate the weak perspective projec-
tion from 3D to 2D as

vproj = Π(v3D) (2)
which can be further expanded as(

v2D
d

)

= Pr · (R · v3D + t) (3)

where vproj =
(

v2D
d

)

represents the position after

3D point v3D is projected to 2D image space. v2D is
the projected 2D position and d is the depth value.
Π = Π(Pr, R, t) represents the model-view matrix.

Pr =




f 0 0
0 f 0
0 0 1



 represents the weak perspective

projection matrix. R represents a 3D rotation matrix
and t is a 3D translation. For convenience, we
decompose the 3D projection formula into

v2D = Πxy(v3D) (4)
and

d = Πz(v3D) (5)

To get a unique result when inversely projecting a
2D point to 3D, the 2D point’s depth value should be
known in advance. Thus the inverse projection from
v2D to the 3D point v3D is

v3D = Π−1(vproj) (6)
which can be further expanded as

v3D = R−1
(

Pr−1
(

v2D
d

)

− t

)

(7)

3.2 Basic nose reconstruction
Tang et al.’s recent work [6] proposed a 3D facial
reconstruction method based on dense contour
features, which can faithfully reconstruct 3D faces,
especially exaggerated faces. Such a method of
establishing 3D–2D dense contour correspondences
does not produce good correspondences for nose
reconstruction, as the 2D nose contour is more
difficult to extract and 3D nose contour varies with
different poses and shapes. Therefore, we just
apply the method of Ref. [6] for initialization, and
facial regions except for the nose are corrected.
The optimization objective of the initial nose
reconstruction is formulated as

E(P, M, CN ) = Ebasic(P, M, CN )[LA, CA−N
0 ]

= ω1Efit
sparse[LA] + ω2Efit

dense[CA−N
0 ]

+ ω3Efit
reg + ω4Ecorrect

dense [CA−N
0 ]

(8)
where P , M , and CN are camera parameters,
objective 3D face mesh, and nose correspondences
respectively as in Eq. (1). ωi is the weight of each
energy term. Efit

sparse[LA] is the low-dimensional
fitting energy using all sparse landmarks LA as
constraints. Efit

dense[CA−N
0 ] is the low-dimensional

fitting energy using all dense contours except for the
nose contour CA−N

0 as constraints. Efit
reg is the low-

dimensional regularization energy which keeps the
parameters in a reasonable range. Ecorrect

dense [CA−N
0 ]

represents the high-dimensional correction energy
based on all dense contours excluding the nose CA−N

0 .
We solve the above optimization problem in three

stages following Ref. [6]. In the first stage, we
estimate a 3D mesh in a low-dimensional space using
sparse constraints, with energy weights ω1 = 1.0,
ω2 = 0.0, ω3 = 0.05, and ω4 = 0.0. In the second
stage, dense constraints are introduced to the fitting
for refinement. Energy weights are ω1 = 0.005,
ω2 = 15.0, ω3 = 2.0, and ω4 = 0.0. In the third
stage, high-dimensional correction is based on dense
constraints, with energy weights ω1 = 0.0, ω2 = 0.0,
ω3 = 0.0, and ω4 = 1.0.

Our initial results show that except for the
nose region, the other regions better match the
feature contours of the image. Based on the initial
reconstructed mesh, we initialize the dense 3D–2D
nose contour correspondence as follows:
CN

0 =(CN,2D
0 , CN,3D

0 )=(Φline
2D (LN,2D), Φcontour

3D (DN
0 ))
(9)
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where CN
0 is the initialized nose dense 3D–2D

correspondence, CN,2D
0 = Φline

2D (LN,2D) represents
the initialized 2D nose contour, generated by
connecting nose landmarks LN,2D with straight lines.
CN,3D

0 = Φcontour
3D (DN

0 ) represents the 3D nose
contour, extracted from the rendered nose depth map
DN

0 . The nose depth map DN
0 is rendered from the

reconstructed nose region mesh MN
0 . In DN

0 , pixels
belonging to nose regions are set to white and other
pixels are set to black. The 2D contour is detected
from the binary mask and the projected 3D nose
vertices that are closest to the contour are found by
nearest neighbor search, giving the initial 3D nose
contour CN,3D

0 .
3.3 Sparse nose correction
The nose shape reconstructed by the method in
Ref. [6] appears quite different from the ground
truth. However, as stated before, dense nose
3D–2D contour correspondences cannot be directly
generated like those for the eyes and lips due
to the difficulties in extracting both 2D and 3D
nose contours. While sparse nose landmarks are
insufficient to describe nose shape, they usually can be
accurately detected. Based on this observation, weak
nose correction [18] is performed using the sparse
nose landmarks, allowing the reconstructed 3D nose
shape to be roughly corrected to fit the 2D nose
shape better. Moreover, with this sparse correction
result, dense nose correspondences can be further
refined. This sparse nose correction optimization can
be formulated as

E(P, M, CN ) = Esparse(MN , CN )[LN ]

=
n∑

i

‖£(v∗
i ) − £(vi)‖2

+ ω
∑

l2D
j ∈LN,2D

∥∥∥v∗
j − l3D

j

∥∥∥
2

(10)

where MN is the nose mesh represented by its
vertices. LN is sparse landmark correspondence,
used as optimization constraints. £ is the Laplacian
operator [18]. ω is a weight to balance the landmark
matching term and the Laplacian term, with an
experimentally determined value of 5.0. Using the
inverse projection Eq. (6), each 2D point l2D

j in
the sparse correspondence can be approximately
converted to a 3D point:

l3D
j = Π−1

(
l2D
j

Πz(vj)

)

(11)

The sparse nose correction not only makes the
reconstructed 3D nose approach the 2D shape, but
also heuristically updates the 3D nose contour for
better dense 3D–2D nose correspondences. The nose
correspondence is updated using

CN
1 = (CN,2D

1 , CN,3D
1 ) = (CN,2D

0 , Φcontour
3D (DN

1 ))
(12)

where CN
1 is the updated nose dense correspondence

in the sparse nose correction stage. CN,2D
1 = CN,2D

0
is the 2D nose contour before updating. CN,3D

1 =
Φcontour

3D (DN
1 ) indicates the heuristically updated 3D

nose contour using the sparsely corrected nose result
DN

1 .
3.4 Dense nose correction
After sparse nose correction, the 3D nose shape is
closer to the 2D input, but the quality of the result
is not sufficient for use in personalized applications.
Thus, we further perform dense nose correction to get
accurate dense 3D–2D nose contour correspondence.
3.4.1 Updating dense nose correspondences
In the previous sparse correction stage, the 3D nose
contour is heuristically updated to better match the
2D input. However, the 2D nose contour is still
inaccurate. Traditional works use a low-level edge
detection method [27] to detect 2D facial contours.
The resulting contours may be noisy or jagged due to
the lack of a shape prior. We overcome this problem
by employing a snake algorithm [7] to combine
both low-level image features and a high-level shape
prior. A snake is an active contour model which
introduces an external fitting energy term to optimize
the objective contour to match the low-level image
features, such as edges and brightnesss. An internal
regular energy term preserves the contour shape and
smoothness. Snake-based 2D contour updating can
be formulated as

C = Φcontour
2D (Cinit, F ) (13)

where C is the updated 2D contour, Cinit is the initial
contour, and F is the feature map of the target image
used to fit the active contour.

Previous work [6] has also employed snakes to
extract facial contours. In that work, the initial
contour is composed of straight lines connecting nose
landmarks, and the feature map is the intensity map
of the gray image. Their method produces good
results for expressive regions, such as eyes and lips,
but is not applicable to extracting the nose contour.
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Unlike the eyes and lips, edge features are indistinct
in nose regions because the skin colors of the nose
and its surrounding regions are similar. We thus
generate an enhanced feature map F using the RGB-
D saliency detection method in Ref. [8], where the
depth map DN

1 is rendered from the reconstructed
3D face mesh. Furthermore, as the shape of the
nose is more complex than the eyes and lips, the ICP
method used in Ref. [6] may result in incorrect 3D–2D
correspondences. We instead set the initial contour
Cinit as the 2D projection of the 3D nose contour
Πxy(CN

1 ), which can implicitly establish accurate 3D–
2D correspondences in an adaptive way. The above
dense nose 3D–2D correspondence update process
can be formulated as

CN
2∗ = (CN,2D

2∗ , CN,3D
2∗ )

= (Φcontour
2D (Πxy(CN,3D

1 ), F N
1 ), CN,3D

1 ) (14)
where CN

2∗ is the updated dense correspondence, and
CN,3D

2∗ = CN,3D
1 represents the 3D nose contour

in the previous sparse correction stage. CN,2D
2∗ =

Φcontour
2D (Πxy(CN,3D

1 ), F N
1 ) indicates the updated 2D

nose contour based on the snake method (Eq. (13)).
In 2D nose updating, the initial nose contour
Πxy(CN,3D

1 ) is the 2D projection of the 3D nose
contour CN,3D

1 , which can implicitly preserve the 3D–
2D correspondences when the 2D contour deforms.
The feature map F N

1 used for the snake algorithm
is an enhanced feature map generated by the RGB-
D saliency detection method [8]. F N

1 = F(IN , DN
1 )

represents the feature map calculated from the RGB
image IN and the depth map DN

1 of the nose. As both
3D and 2D contours are evolved from CN,3D

1 , accurate
dense 3D–2D nose correspondences can be implicitly
preserved without any additional computation such
as ICP.

When calculating the enhanced feature map F N
1

using the RGB-D saliency detection method, we
compute the probability of each pixel belonging to
the foreground, resulting in enhanced edges. We
modify the original method [8] to better suit our task.
Specifically, the random walk seeds for foreground
and background are sampled on different sides of
the banded area formed by CN,2D

1 and Πxy(CN,3D
1 ),

and we set the random walk weight graph using the
depth information for regularization, to constrain the
resulting foreground boundary to be close to the input
nose boundary in the depth map.

3.4.2 Dense nose correction
With the updated dense nose 3D–2D contour
correspondences, we correct the nose shape in the
high-dimensional space:

E(P, M, CN ) = Edense(MN , CN )[CN
2∗ ]

=
n∑

i=1
‖£(v∗

i ) − £(vi)‖2

+ ω
∑

c2D
j ∈CN,2D

2∗

∥∥∥v∗
j − c3D

j

∥∥∥
2

(15)

where MN is the target 3D nose to be corrected.
CN

2∗ is the 3D–2D correspondence of nose contour
(Eq. (14)), used as constraints. ω is a weight to
balance the landmark matching term and Laplacian
term, with an experimentally determined value of 5.0.
Each 2D point c2D

j in the dense correspondence can
be converted into a 3D point approximately by

c3D
j = Π−1

(
c2D

j

Πz(vj)

)

(16)

where the depth value is rendered using the
corresponding 3D vertex Πz(vj).

After dense nose correction, an accurate 3D nose
shape MN

2 is generated. As in Eq. (12), the dense
correspondence can be further updated by

CN
2 = (CN,2D

2 , CN,3D
2 ) = (CN,2D

2∗ , Φcontour
3D (DN

2 ))
(17)

to give the final output of the dense 3D–2D contour
correspondence.

4 Experiments
4.1 Comparison to the state-of-the-art
We compared our method with Tang et al.’s state-of-
the-art image-based 3D face reconstruction method
[6] using the Stirling ESRC 3D face dataset [24]:
see Fig. 3. The experimental results demonstrate
that our method outperforms it by reconstructing
better, personalized, distinctive nose shapes. Further
quantitative comparisons with optimization based
methods [6, 26] on the BU-3DFE dataset [25]
numerically demonstrate the advantage of our
method: see Fig. 4. Additionally, we compared our
method to recent learning based methods [15, 16],
again showing the better performance of our method:
see Fig. 5.
4.2 Ablation study
We conduct ablation experiments to demonstrate the
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Fig. 3 Comparison with Tang et al.’s state-of-the-art method [6] using the Stirling ESRC dataset [24]. Top: input images. Middle: results of
our method. Bottom: results using Tang et al.’s method.

Fig. 4 Comparison with state-of-the-art optimization based methods using the BU-3DFE dataset [25]: (a) input images; (b) results of
Face2Face [26]; (c) results of Tang et al. [6]; (d) results of our method; (e) ground truth 3D meshes. Reconstruction error (in mm) is visualized
in red/blue color maps, with root mean squared error and standard deviation given below the color maps.
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Fig. 5 Comparison with state-of-the-art learning based methods using the BU-3DFE dataset [25]: (a) input images; (b) results of RingNet [15];
(c) results of D3DFR [16]; (d) results of our method; (e) ground truth 3D meshes. Reconstruction error (in mm) is visualized in red/blue color
maps, with root mean squared error and standard deviation given below the color maps.

roles of all three stages of our method. The results
after each stage are shown in Fig. 6. It demonstrates
that both sparse and dense correction can significantly
improve nose reconstruction. In the first example,
nose wings are improved in the final result. In the
second example, the overall shape and position of
the model are improved. In the third example, the
final reconstructed results have lower nostrils, better
matching the input image.

4.3 Fixed versus updated 3D contour
Successful nose correction relies on adequate accuracy
of matched features in the nose region. The 3D
nose contour must match the 2D contour; otherwise,
the reconstructed results cannot accurately recover
the shape of the nose in the 2D image. Our 3D
contour updating scheme is designed with that aim.
In Fig. 7, we compare the results of using a fixed
3D nose contour and our proposed heuristic 3D nose
contour updating scheme, where we can see that our
method provides much better results.
4.4 2D contour updating
The traditional snake method is used to update the
2D contour based on the intensity feature map of the

image. However, features on the intensity map are
not distinctive, often leading to poor nose boundaries.
Our enhanced feature map generated from RGB-
D data is designed to cope with this problem. In
Fig. 8, we compare the results based on feature maps
generated from the intensity map, the RGB saliency
map and the RGB-D saliency map, showing that
the RGB-D saliency map significantly improves the
quality of the 2D contour and further improves the
quality of nose correction. The 3D nose tip shape
generated by the proposed method better matches
the input image for pointed noses.

5 Conclusions
In this paper, we proposed a 3D nose reconstruction
method which adaptively updates the nose model
to better match the input 2D facial image. Our
method utilizes coarse-to-fine 3D nose correction
in its reconstruction approach, which adaptively
and heuristically builds and updates dense 3D–2D
nose contour correspondences to adapt to different
face poses and nose shapes. We also improve 2D
nose contour detection using an enhanced feature
map generated from RGB-D data rendered from the
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Fig. 6 Ablation study results. Columns, left to right: input images,
first stage results, second stage results, third stage (final) results of the
proposed method. Numbers below the first column give the resolution
of the nose region; numbers below other columns are mean pixel errors
between the reconstructed nose contour (blue) and the ground truth
nose contour (green).

Fig. 7 3D nose contour updating benefits. Left to right: input
images, results without 3D contour updating, results with 3D contour
updating. Numbers have meanings as in previous figure.

Fig. 8 Utility of 2D contour update. Left to right: input image,
results using intensity map, results using RGB saliency map, results
using RGB-D saliency map.

intermediate nose model. Our experiments show the
improved quality of noses reconstructed using our
method, compared to the current state-of-the-art
facial reconstruction method.

Acknowledgements
This research was supported by the National Natural
Science Foundation of China (Grant Nos. 61972342,
61602402, and 61902334), Zhejiang Provincial Basic
Public Welfare Research (Grant No. LGG19F020001),
Shenzhen Fundamental Research (General Project)
(Grant No. JCYJ20190814112007258), and the Royal
Society (Grant No. IES\R1\180126).

References

[1] Samad, M. D.; Iftekharuddin, K. M. Frenet frame-
based generalized space curve representation for pose-
invariant classification and recognition of 3-D face.
IEEE Transactions on Human-Machine Systems Vol.
46, No. 4, 522–533, 2016.

[2] Werghi, N.; Tortorici, C.; Berretti, S.; Del Bimbo,
A. Boosting 3D LBP-based face recognition by fusing
shape and texture descriptors on the mesh. IEEE
Transactions on Information Forensics and Security
Vol. 11, No. 5, 964–979, 2016.

[3] Li, H.; Yu, J. H.; Ye, Y. T.; Bregler, C. Realtime facial
animation with on-the-fly correctives. ACM Transactions
on Graphics Vol. 32, No. 4, Article No. 42, 2013.

[4] Li, Y.; Ma, L. Q.; Fan, H. Q.; Mitchell, K. Feature-
preserving detailed 3D face reconstruction from a single
image. In: Proceedings of the 15th ACM SIGGRAPH
European Conference on Visual Media Production,
Article No. 1, 2018.

[5] Jiang, L.; Zhang, J. Y.; Deng, B. L.; Li, H.; Liu, L. G.
3D face reconstruction with geometry details from a
single image. IEEE Transactions on Image Processing
Vol. 27, No. 10, 4756–4770, 2018.

[6] Tang, Y. L.; Han, X. G.; Li, Y.; Ma, L. Q.; Tong, R. F.
Expressive facial style transfer for personalized memes
mimic. The Visual Computer Vol. 35, 783–795, 2019.



236 Y. Tang, Y. Zhang, X. Han, et al.

[7] Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active
contour models. International Journal of Computer
Vision Vol. 1, No. 4, 321–331, 1988.

[8] Tang, Y. L.; Tong, R. F.; Tang, M.; Zhang, Y.
Depth incorporating with color improves salient object
detection. The Visual Computer Vol. 32, 111–121, 2016.

[9] Blanz, V.; Vetter, T. A morphable model for
the synthesis of 3D faces. In: Proceedings of the
26th Annual Conference on Computer Graphics and
Interactive Techniques, 187–194, 1999.

[10] Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.;
Vetter, T. A 3D face model for pose and illumination
invariant face recognition. In: Proceedings of the 6th
IEEE International Conference on Advanced Video and
Signal Based Surveillance, 296–301, 2009.

[11] Booth, J.; Roussos, A.; Zafeiriou, S.; Ponniah, A.;
Dunaway, D. A 3D morphable model learnt from 10,000
faces. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5543–5552,
2016.

[12] Zhu, X. Y.; Lei, Z.; Liu, X. M.; Shi, H. L.; Li, S.
Z. Face alignment across large poses: A 3D solution.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 146–155, 2016.

[13] Cao, C.; Weng, Y. L.; Zhou, S.; Tong, Y. Y.; Zhou, K.
FaceWarehouse: A 3D facial expression database for
visual computing. IEEE Transactions on Visualization
and Computer Graphics Vol. 20, No. 3, 413–425, 2014.

[14] Feng, Y.; Wu, F.; Shao, X. H.; Wang, Y. F.; Zhou, X.
Joint 3D face reconstruction and dense alignment with
position map regression network. In: Computer Vision–
ECCV 2018. Lecture Notes in Computer Science,
Vol.11218. Ferrari, V.; Hebert, M.; Sminchisescu, C.;
Weiss, Y. Eds. Springer Cham, 557–574, 2018.

[15] Sanyal, S.; Bolkart, T.; Feng, H. W.; Black, M. J.
Learning to regress 3D face shape and expression from
an image without 3D supervision. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7755–7764, 2019.

[16] Deng, Y.; Yang, J. L.; Xu, S. C.; Chen, D.; Jia, Y.
D.; Tong, X. Accurate 3D face reconstruction with
weakly-supervised learning: From single image to image
set. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops,
285–295, 2019.
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