
Zhang Y, Tang YL, Cheng KL. Efficient video cutout by paint selection. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 30(3): 467–477 May 2015. DOI 10.1007/s11390-015-1537-y

Efficient Video Cutout by Paint Selection

Yun Zhang 1 (Ü !), Yan-Long Tang 2 (/ò9), and Ke-Li Cheng 2 (¤�á)

1Institute of Zhejiang Radio and TV Technology, Zhejiang University of Media and Communications

Hangzhou 310018, China
2College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

E-mail: zhangyun zju@zju.edu.cn; yanlongtang@gmail.com; chengkeli@zju.edu.cn

Received December 8, 2014; revised March 6, 2015.

Abstract Video cutout refers to extracting moving objects from videos, which is an important step in many video editing

tasks. Recent algorithms have limitations in terms of efficiency, interaction style, and robustness. This paper presents a

novel method for progressive video cutout with less user interaction and fast feedback. By exploring local and compact

features, an optimization is constructed based on a graph model which establishes spatial and temporal relationship of

neighboring patches in video frames. This optimization enables an efficient solution for progressive video cutout using graph

cuts. Furthermore, a sampling-based method for temporally coherent matting is proposed to further refine video cutout

results. Experiments demonstrate that our video cutout by paint selection is more intuitive and efficient for users than

previous stroke-based methods, and thus could be put into practical use.

Keywords video cutout, progressive, graph cut, paint selection

1 Introduction

With rapid development of digital devices such as

camera, smart phone and pad, videos can be easily ob-

tained anytime and anywhere. Meantime, video sharing

and social networks make the video data grow explo-

sively. Given the ever-increasing availability of videos,

it has become more and more important to manipulate

them in an intuitive and efficient manner. Similar to

image editing, video cutout is basic and important for

many video editing operations[1-2]. For images, there

are many commercial tools for object selection, like

the quick selection and magic wand tool in Photoshop,

which are very popular due to their simplicity and effi-

ciency, and users can freely select region of interest. For

videos, tools for object selection are neither robust nor

efficient enough for users. Although Adobe company

has provided Roto Brush in After Effects 1○, which can

propagate foreground selection in keyframes to other

frames, users always have to repair the propagation re-

sults frame by frame, which is labor-intensive.

Actually, video cutout is challenging due to the fol-

lowing reasons: 1) A large amount of data: even a 20 s

short video contains at least 500 frames (size: 400 ×

600), and thus algorithms for video cutout should be

specially designed to handle a large amount of data. 2)

Temporal coherence: directly processing video cutout

frame by frame will generate discontinuous results, and

people are usually very sensitive to this.

Now, the stroke-based image/video editing has be-

come increasingly popular due to its simplicity and ef-

ficiency, and the essence is to propagate users’ edit-

ing from strokes to other unmarked regions of an

image/video, such as editing propagation[3-4], paint

selection[5]. Inspired by [5], Tong et al. presented

video brush[6], a new interface for progressive video ob-

ject selection. Although being novel and creative, their

Regular Paper

Special Section on Computational Visual Media

This work was supported by the National High Technology Research and Development 863 Program of China under Grant
No. 2013AA013903, the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14F020050, and the National
Basic Research 973 Program of China under Grant No. 2011CB302205.

1○Details of Roto Brush in Adobe After Effects. http://tv.adobe.com/watch/learn-after-effects-cs5/making-a-quick-matte-with-
roto-brush/, Oct. 2014.

©2015 Springer Science +Business Media, LLC & Science Press, China

468 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

method is not efficient, and results are hard to control.

In addition, the algorithm requires a large amount of

memory and computation, and users cannot get fast

feedback when dragging the brush, and thus it is far

from practical use.

To address the problems in video brush[6], we

propose video paint selection, an efficient solution

for stroke-based progressive video cutout, which can

largely reduce the memory and computation cost, and

make the interactive video cutout more practical. In

our approach, we first cluster pixels in each frame into

several patches. Then, we construct a 3D graph to link

spatial and temporal neighboring patches. Finally, the

video cutout is configured to be a binary labeling prob-

lem, which could be solved by the graph cuts optimiza-

tion. We further propose a sampling-based temporally

coherent matting to refine the binary video cutout re-

sults. Experimental results show that our video paint

selection can efficiently extract foreground regions with

easy interactions and high accuracy.

Contributions of this paper include:

• An efficient solution is proposed for stroke-based

progressive video cutout, which can provide users fast

and accurate feedback with easy and intuitive interac-

tions.

• A sampling-based temporally coherent matting is

proposed to refine the binary video cutout results.

The remainder of this paper is organized as follows.

Section 2 gives a brief survey of related work. In Sec-

tion 3, we present the interaction tool and algorithm

of video paint selection. Section 4 gives temporally co-

herent video matting which further refines the binary

video cutout results. Experimental results and analy-

sis are provided in Section 5. Finally, we conclude this

paper in Section 6.

2 Related Work

Video cutout is a basic and important operation in

many video editing tasks, and has always been a hot

topic in computer vision and graphics. Hu et al.[7] pre-

sented a survey on Internet visual media processing,

which provides recent progress of image/video analysis

and editing. In video object selection, there exist two

main categories: binary cutout and video matting[8].

Here, we briefly review recent work that is closely re-

lated to our paper.

Binary cutout refers to binary segmentation of fore-

ground objects, which includes two main categories:

keyframe propagation and graph cuts optimization.

Agarwala et al.[9] applied an optimization scheme to

implement a rotoscoping system based on the keyframe

tracking, which can largely reduce the interactions

in shape tracking, but cannot handle the topology

changes, and thus can only extract objects with sim-

ple movement. In 2009, Bai et al. proposed video

snapcut[10], which has already been applied in Adobe

After Effects CS5. In video snapcut[10], users first accu-

rately extract the foreground in keyframes, and then se-

lections are propagated forward and backward accord-

ing to a number of local features (color, texture, shape,

movement, etc.) near the foreground boundary. By lo-

cal classifiers, video snapcut can deal with foreground

extraction from complex background. However, it may

fail when the foreground moves fast or the topology

changes, thus requiring a huge number of user interac-

tions.

Recently, graph cuts optimization[5,11-12] has been

widely applied to interactive image segmentation, and

the quick selection tool in Photoshop is a successful ap-

plication. Given the good performance in images, it

is natural to extend it to videos. Li et al.[13] applied

the graph cuts to video segmentation. They first accu-

rately selected foreground in keyframes, and then con-

structed a 3D graph to express the spatial and temporal

relations of video data. Finally the foreground was ex-

tracted by the graph cuts optimization. However, the

global color model may result in incorrect segmenta-

tion in local regions, and thus they further proposed

a local optimization based on tracking to improve the

segmentation results. At the same time, Wang et al.[14]

proposed a new interaction tool —– video cube brush,

and users can specify foreground and background re-

gions by rotating, cutting and splitting the video cube.

Furthermore, they proposed a hierarchical graph cuts

method, which can efficiently extract foreground ob-

jects. However, this interaction tool is difficult for or-

dinary users, and the global optimization in the hierar-

chical graph cuts makes the process of foreground ex-

traction hard to control. Different from Wang et al.[14],

Tong et al.[6] allowed users to operate videos in a 2D

manner. When users are specifying foreground regions

by dragging a brush across frames, the video is playing

forward and backward in a low speed, and thus video

brush will leave a lot of foreground strokes in continuous

frames. Finally, the cutout results are calculated pro-

gressively by the graph cuts optimization[11]. Although

video brush is user-friendly, users cannot get fast feed-

back as they drag the brush across frames, and the local

modifications may affect existing results. In addition,

Yun Zhang et al.: Efficient Video Cutout by Paint Selection 469

the algorithm requires a large amount of memory and

computation, and thus the method in [6] is still far from

practical use. In this paper, we aim to improve the per-

formance of video brush[6], and make this painting tool

more efficient and practical.

Video matting aims to refine the results of binary

video cutout, which takes a source video and the corre-

sponding trimap as input, and the output is the tem-

porally coherent matte. Shahrian et al.[15] proposed

a sampling-based method to improve the temporal co-

herence and spatial accuracy of video matting, which

is achieved by sampling temporal and local samples

that cover the foreground and background color dis-

tribution over all pervious frames. They also included

a local texture descriptor to distinguish the foreground

and background in low contrast videos. Ju et al.[16]

modeled segmentation uncertainty in a novel tri-level

segmentation procedure, which can deal with difficult

cases like the topology changes. Zhong et al.[17] pro-

posed an efficient video cutout system, which can deal

with temporal discontinuities while remaining robust

to inseparable foreground and background. In this pa-

per, we propose a sampling-based video matting, and

the temporal coherence is ensured by the temporally

coherent filtering.

3 Video Paint Selection

In this section, we present the interaction tool and

the algorithm of video paint selection.

3.1 Interaction Tool

Different from Wang et al.[14], who viewed a video

as a 3D cube, we expand the video to be a number

of continuous frames, and allow users to operate it in

a 2D manner. Similar to paint selection[5], which en-

ables progressive selection in images, our video paint

selection can provide a tool to select video objects

step by step as users paint across continuous frames.

As shown in Fig.1, when users specify definite fore-

ground/background regions across frames, the video is

playing at a certain speed, and thus users’ paintings will

appear in continuous frames. The red and the green

strokes refer to definite and unwanted foreground re-

spectively, and the strokes are further used for the cal-

culation of video cutout. In general, when the scene of

a video is not too complicated, users only need to paint

across a few frames, and the foreground regions could

be easily extracted.

(a)

Time

(b)

U No⊲ t

F'

F

L

s

Fig.1. Video painting tool and progressive selection. (a) Users’
paintings across frames by progressive selection. (b) Progressive
selection is triggered when the painting tool enters U , and new

foreground F
′

is added to existing foreground F .

3.2 Algorithm

Given existing foreground F , our goal is to com-

pute new foreground F
′

as users paint on continuous

frames, and then the foreground region is updated as

F = F ∪ F
′

. When users’ painting P enters unknown

region U , the calculation of F
′

is triggered. For robust-

ness, when F
′

contains some disconnected regions, we

only consider regions in each frame that connect with

F as new foreground. Actually, the essence of the al-

gorithm is to propagate the foreground selection from

the seed region S = P ∩ U to spatially and temporally

neighboring regions with similar appearance and loca-

tions.

To improve the efficiency and the robustness, we

first cluster pixels of each video frame to be patches us-

ing mean-shift[18], which can cluster similar pixels while

preserving the structure. The feature of each patch is

simply represented by the average color in the patch.

Similar to previous studies in image segmenta-

tion[5,19-20], we configure the problem of video paint se-

lection as binary labeling of the Markov random field.

In this problem, the input video is represented by a

3D graph G = (P ,N), where P refers to all clustered

patches in video frames, and N refers to all spatial and

temporal links between neighboring patches. Figs.2(a)

and 2(b) are source video frames and clustering re-

sults respectively, and Fig.2(c) shows the relationship of

patches in and between frames. For neighboring frames,

when two patches overlap and have similar features,

there will be a link between them. The output of this

problem is labels (lp ∈ {0, 1}) for all patches in a video.

When lp = 0 or 1, p is labeled to be background or

foreground respectively. The binary labels lp can be ef-

ficiently calculated by the Markov random field[11], see

(1).

470 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

E(l) =
∑

p∈P

Dp(lp) + λ×

(

∑

(p, q)∈N

Vp, q(lp, lq) +

∑

(m, n)∈Q

Wm, n(lm, ln)

)

. (1)

Frame No⊲ t Frame No⊲ t֓

(a)

(b)

(c)

Fig.2. Video pre-segmentation and 3D graph construction. (a)
Neighboring frames of a source video. (b) Clustering results
of neighboring frames. (c) Links in and between neighboring
frames based on the patches.

In (1), E(l) is a linear combination of data term

Dp(lp) and smooth term (Vp, q, Wm, n), and λ is used

to balance the importance of the two terms. Finally,

lp can be obtained by minimizing E(l). Details of the

energy definition are given below.

Dp(lp) measures the distance between one patch and

the foreground/backgroundmodel, which is represented

by the Gaussian Mixture Model (GMM), and the defi-

nition is similar to [6]. In previous studies[13-14], the

GMM is constructed globally, which is not suitable for

progressive selection, and current paintings may affect

existing video cutout results. To make video cutout

more robust, we construct the GMM locally and com-

pactly. See Fig.1, L ∪ S is used to estimate the local

foreground GMM (usually 2∼5 cores) Gf . Since the

background is not specified directly, we first randomly

sample a number of patches from U , and then replace

patches which are labeled as foreground or similar to re-

gions in L∪S by sampling the same number of patches

from U . With suitable samples from U , the background

GMM Gb is set up. Considering that different patches

have different sizes, we give more weights to bigger

patches in GMM construction, which makes the GMM

more representative. In this paper, the weight of each

patch is defined by the number of pixels in the patch.

Similar to [5], the definition of Dp(lp) is given below.

Dd(lp)

=

(1− lp)×K, ∀p ∈ S,

lp ×K, ∀p ∈ SB,

lp ×Gf
p + (1− lp)×Gb

p, ∀p ∈ U \ (S ∪ SB),
(2)

where K is a large constant, Gf
p = − ln(gf (p)), Gb

p =

− ln(gb(p)) refer to the distance between p and fore-

ground/background GMM.

The smooth term consists of two components:

Vp, q(lp, lq), Wm, n(lm, ln), and the definitions are as fol-

lows.

Vp, q(lp, lq) = |lp − lq| × exp(−β × ‖C(p)− C(q)‖2),

(p, q) ∈ N , (3)

Wm, n(lm, ln) = γ × |lm − ln| × exp(−β × σ(m,n)2),

(m, n) ∈ Q, (4)

where Vp, q and Wm, n refer to the costs of neighboring

patches in and between frames respectively, which can

ensure the spatial and temporal coherence of neighbor-

ing patches, and improve the performance of our video

cutout. In (3), C(·) is the value of a patch, and N

refers to all links in one frame. In (4), σ(m,n)2 is

the L2 distance between neighboring patches, where

σ(m,n)2 = ‖C(m) − C(n)‖2. γ is used to balance

the weights of smooth terms in one frame and be-

tween neighboring frames. To optimize the graph con-

struction, not all neighboring patches have links be-

tween them, and only when they are similar enough

(σ(m,n)2 < ε), a link (m,n) is added to G. Q refers to

all links between neighboring frames.

3.3 Optimization

To provide users fast feedback in progressive selec-

tion, we propose the following optimization schemes.

1) For fast pre-segmentation and video cutout, we

first downsample video frames to low-resolution ones,

and then cluster them and calculate video cutout

in low-resolution. Finally, we apply joint bilateral

upsampling[21] to create an adaptive band in high-

resolution level, and calculate the final video cutout by

the banded graph cuts[22]. We can also employ the tem-

porally coherent matting, which will be elaborated in

Section 4, to refine the video cutout in the band region.

Yun Zhang et al.: Efficient Video Cutout by Paint Selection 471

2) Similar to [6], we accelerate the 3D graph con-

struction by pre-computing the smooth terms which are

constants after the video pre-segmentation. Thus, dur-

ing the process of video paint selection, only data terms

are calculated, which largely reduces the computational

cost.

3) We specify region of interest to reduce the data

size in video cutout, and add hard constraints in defi-

nite foreground/background regions to make the video

paint selection more effectively and efficiently. The im-

plementation is as follows. (Dd(lp)) = (1 − lp) ×K or

lp ×K, ∀p ∈ S or SB, see details in (2).

3.4 Implementation

We first add two terminal nodes s and t, which rep-

resent source (foreground) and sink (background) re-

spectively, then add links from s and t to all nodes

in G, and finally obtain G = (P ∪ {s, t},N). In G,

weights on the links from s, t to all nodes are defined

by Dp(lp). Vp, q(lp, lq) defines weights on links between

neighboring nodes in one frame, and Wm, n(lm, ln) de-

fines weights on links between overlapped and similar

nodes in neighboring frames. In general, it is hard to

get the global optimization of (1), and thus we apply

the graph cuts[11] to efficiently calculate the local opti-

mization, and get the video cutout results according to

the labels on patches.

There are four parameters to determine the perfor-

mance of our video cutout: λ, β, γ, ε. We set λ = 5

and γ = 10 in our method, which places more impor-

tance on the smooth terms in one frame and between

neighboring frames. β is used to determine the smooth-

ness of results, and we set β = 0.1. ε is used to control

the propagation of user specified strokes to neighboring

frames, and we set ε = 8. For satisfying results, we

have tested more than 40 videos to get the parameters

above, which are always effective and robust for most

videos. In experiments, we mainly adjust γ and ε for

better results.

4 Temporally Coherent Video Matting

The results of video cutout are binary (0 or 1)

and coarse near the boundary, and thus cannot be

used to accurately extract transparent objects, such

as hair, smoke and other foreground objects with soft

boundaries. We further refine the binary cutout re-

sults to get high-quality video matte, which can be ap-

plied in a series of video editing operations, like video

composition[1]. Inspired by [23], we combine sampling-

based matting and temporal filtering to generate tem-

porally coherent matte. Different from [10, 13], we en-

sure the temporal coherence by filtering, which avoids

solving a large linear system, and thus can improve the

efficiency. Fig.3 gives the algorithm flow chart, which

is described as follows.

1) Generate temporally coherent trimap. Since the

matting results depend on the quality of trimap, we

first erode and dilate the binary video cutout results to

generate initial trimap, and then fix the trimap of some

frames by bandwidth adjusting and interactive editing.

2) Global sampling-based matting. We calculate

the matte of each frame by the global sampling-

based matting[24]. To avoid missing suitable foregro-

und/background pairs, we expand the search from cur-

rent frame to neighboring 2∼4 frames. See Fig.3(c), the

red and blue points refer to the foreground and back-

(a)

Video Sequence Global Sampling
Matting

Temporal Filtering

Video Cutout Results

Temporally Coherent
Trimap

(b) (c) (d)

Fig.3. Video matting flow chart. After obtaining (a) the binary cutout results, we first generate (b) temporally coherent trimap,
and then compute the matte of each frame by (c) the global sampling; finally, the temporally coherent matte is calculated by (d) the
temporal filtering.

472 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

ground samples in one frame respectively. To obtain

satisfying foreground/background pairs efficiently, the

random search[25] is applied.

3) Temporal matte filtering. Due to the variation of

color, illumination, noises between neighboring frames,

the frame-by-frame matting cannot ensure the cohe-

rence. We apply the temporal filtering to refine the

frame-by-frame matte, see Fig.3(d). Given three con-

tinuous mattes αt−1, αt, αt+1, the temporal matting is

defined by (5), where fI(·) is an interpolation function

based on the level-set, see details in [23].

αt
new = fI(α

t, fI(α
t−1, αt+1, 0.5), 0.5). (5)

Fig.4 gives video matting results. Fig.4(a) shows the

binary cutout results of neighboring frames. Fig.4(b)

shows the frame-by-frame matting results, which are

not temporally coherent. Fig.4(c) shows the tempo-

rally coherent matting results, and the zoom-in view

shows that our temporally coherent matting can gene-

rate high-quality matte with no flickering.

(a) (b)

Frame-by-Frame
Matting Coherent Matting

(c)

N
o
⊲
t

N
o
⊲
t
֓

Fig.4. Video matting results. (a) Binary cutout results of con-
tinuous frames. (b) Frame-by-frame matting results. (c) Tem-
porally coherent results by our method.

5 Results and Discussions

In this section, we show a number of examples and

comparisons with state-of-the-art methods to demon-

strate the advantages of our video paint selection. Fur-

thermore, we discuss the effectiveness and limitations of

our method. Our experiments are performed on a PC

equipped with Intel Core 2 Duo E8400, 3 GHz CPU,

4 G Memory, and NVIDIA Geforce 8800. For better

visual effects, boundaries of video objects are shown by

black-and-white lines in all examples.

5.1 Results

Fig.5 describes the process of video paint selection

in detail. The first row shows users’ paintings in dif-

ferent frames. Below the first row, each row gives the

cutout results in the same frame by different strokes,

and each column shows the cutout results in different

frames by the same stroke. Results in Fig.5 show that

only a few strokes are enough to extract moving ob-

jects from a video. As shown in the first row, users

can locally remove the unwanted foreground region by

painting green strokes, and add missing foreground re-

gion by painting red strokes.

Fig.6 shows comparison of our method with video

snapcut[10] and video brush[6]. Fig.6(a) shows accu-

rate selection in a keyframe, and Fig.6(b) shows se-

lection results by video snapcut with no user inter-

actions. Fig.6(c) gives users’ paintings in continuous

frames. Figs.6(d) and 6(e) are results by video brush

and our method respectively. It is obvious that our

method is more effective and robust than state-of-the-

art methods.

Fig.7 shows results of two challenging cases, which

contain fast movement and low contrast in foreground

and background. Results show that our method still

performs well in some challenging cases, while other

methods such as video snapcut[10] always require more

user interactions, and their results are not satisfying.

Fig.8 gives more results of our video cutout.

Figs.8(a) and 8(c) are the source videos. Figs.8(b) and

8(d) are the video cutout results, which are refined by

temporally coherent matting. Observing from the re-

sults, we find that our method performs well in diffe-

rent cases, such as complex background, low contrast

in foreground and background, and foreground with de-

tails like the hair.

Fig.9 gives applications of our video cutout.

Figs.9(a) and 9(c) are the frames of source videos.

Figs.9(b) and 9(d) show the composition results by al-

pha blending and gradient domain composition[1] re-

spectively. The composition results are visual-pleasing,

which demonstrates that our video paint selection can

be used in video editing tasks.

We designed a user study to evaluate the effective-

ness of our method. In the user study, we organized 25

undergraduate students (without experience in video

editing) majored in computer science, liberal art, Ra-

dio & TV engineer, finance, and graphics design for

user study, and asked them to extract foreground us-

ing our system, video snapcut[10] (implemented by Roto

Brush) and video brush[6] respectively. See Fig.10, we

developed a software system to implement the video

paint selection. In this system, users can progressively

extract foreground objects by the paint selection tool

and observe the selected foreground in real time.

Yun Zhang et al.: Efficient Video Cutout by Paint Selection 473

1 2 3 9 10
C

u
to

u
t

R
e
su

lt
s

in
 D

if
fe

re
n
t

F
ra

m
e
s

b
y
 O

n
e
 S

tr
o
k
e

N
o
.
2
0

N
o
.
1
6

N
o
.
1
1

N
o
.
6

N
o
.
1

(b)

(a)

Cutout Results in the Same Frame by Different Strokes

Fig.5. Video paint selection. (a) Strokes in different frames, and red/green strokes mark the foreground/background. (b) Each row
shows the video cutout results in the same frame by different strokes, and each column shows video cutout results in different frames
by the same stroke.

Table 1 gives comparisons of performance in video

snapcut[10], video brush[6] and our method. The third

column shows the average time of video foreground

extraction by each painting, and the following four

columns show the average number of strokes in each

frame and the total time of foreground extraction by

our paint selection, video snapcut[10], and video brush[6]

respectively. In general, our method will be more ef-

ficient when the scene is simpler, as less patches are

clustered. Observing from Table 1, we found that when

scenes are relatively simple and contain no fast move-

ment, the performance of the three methods above is

better. However, when the background is complex, or

the foreground moves fast, both video snapcut[10] and

video brush[6] require more user interactions. Moreover,

the local modifications in video brush may affect exist-

ing selections, and the calculation always costs much

more time.

Furthermore, we conducted a survey to evaluate the

diversity and consistency about users’ feedback, and re-

ported their average scores (0: definitely unsatisfied, 5:

definitely satisfied) in answer to the questions as fol-

lows:

• Is the video paint selection tool intuitive and easy

to use? (average score: 4.5)

• Does the video paint selection provide fast feed-

back as you paint across frames? (average score: 4.6)

• Are you satisfied with the robustness and accuracy

of video paint selection results? (average score: 4.2)

• Do you think the video paint selection can be fur-

ther put into practical use, and applied to video edit-

ing tasks, such as video composition, post production?

(average score: 4.3)

5.2 Discussions

We give analysis on the effectiveness of our method.

Firstly, we cluster video pixels into patches which can

474 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

(a)

(b)

(c)

(d)

(e)

Fig.6. Comparison with video snapcut[10] and video brush[6]. (a) Accurate selections in a keyframe. (b) Results by video snapcut with
no user interactions. (c) Users’ paintings in continuous frames. (d) Results by video brush. (e) Results by our method.

(a)

(b)

Fig.7. Challenging cases. Two examples of video cutout by (a) our method and (b) video snapcut[10] . The two examples are challenging,
which contain fast movement and low contrast in foreground and background.

largely reduce the data size, and provide users fast feed-

back in video paint selection. In addition, our method

propagates the foreground selection much faster in

smooth regions. Secondly, we allow users to select ob-

jects as video plays, which can better express users’

intention, and reduce the user interactions compared

with the propagation-based method[10]. Thirdly, in the

graph construction, we explore local and compact fea-

tures to build spatial and temporal relations between

patches, and consider similarities between neighboring

patches, which can largely improve the robustness of

video paint selection.

Yun Zhang et al.: Efficient Video Cutout by Paint Selection 475

(a)

(b)

(c)

(d)

Fig.8. More results of our video painting. (a)(c) Source videos. (b)(d) Video cutout results, which are refined by temporally coherent
matting.

(a) (b)

(c) (d)

Fig.9. Applications of our method. (a)(c) Frames of two source videos. Composition results by (b) alpha blending and (d) gradient
domain blending.

Table 1. Performance of the Proposed Algorithm

Video 600×Size Avg. Time of Video Foreground Avg. Number Time of Foreground Extraction (s)

Extraction by Each Paint (s) of Strokes Our Method Snapcut Video Brush

Fig.3 600 × 240 × 80 0.516 1 13 17 32

Fig.7(a)-wolf 1 024 × 276 × 80 0.477 2 25 34 50

Fig.8(a)-girl 605 × 406 × 80 0.610 1 16 23 35

Fig.8(a)-lady 640 × 480 × 80 0.540 1 14 20 33

Fig.8(c)-man 640 × 480 × 80 0.508 2 23 30 48

Fig.8(c)-girl 562 × 356 × 100 0.428 2 21 34 47

476 J. Comput. Sci. & Technol., May 2015, Vol.30, No.3

Similar to other methods[6,10], our method may fail

when there exists fast movement, motion blur, or in-

correct video clustering. Fig.11 gives failure cases, and

Figs.11(a) and 11(b) are the foreground selection results

by our method and video snapcut[10] respectively. Due

to the incorrect clustering (left: feet and the ground are

clustered together) and fast movement (right), both our

method and video snapcut fail to produce satisfying re-

sults.

Fig.10. Software interface of our system. The left part is the
source video, and the right part shows the selected foreground
by progressive selection.

(a)

(b)

Fig.11. Failure cases. (a) and (b) are the foreground selection results by our method and video snapcut[10] respectively. Due to the
incorrect clustering and fast movement, both our method and video snapcut fail to get satisfying results.

6 Conclusions

In this paper, we proposed video paint selection

whose users can extract foreground regions progres-

sively by painting across frames. We formulated the

video cutout as a binary labeling problem. Firstly, we

clustered pixels of each frame into patches according

to the color and spatial similarities, which greatly re-

duces the size of video data. Secondly, we formulated

an optimization based on a 3D graph, which constructs

the spatial and temporal relationship among patches

according to the local and compact features in frames.

Finally, this optimization can be efficiently solved by

graph cuts[11], and the binary cutout results are ob-

tained according to the labels on patches. We further

proposed a sampling-based method for temporally co-

herent video matting, which refines the binary cutout

results. Finally, we gave results and applications of

video paint selection to show the advantages of our

method.

In the future, we will explore more effective algo-

rithms to deal with complex texture, motion blur, fast

movement, low contrast foreground and background,

and design more user-friendly interface for better per-

formance in video cutout. For better video matting, we

will introduce optical flow[26] to ensure the temporal

coherence.

Acknowledgement The authors would like to

thank anonymous reviewers and editors for their valu-

able comments.

References

[1] Chen T, Zhu J Y, Shamir A, Hu S M. Motion-aware gradi-

ent domain video composition. IEEE Transactions on Im-

age Processing, 2013, 22(7): 2532-2544.

[2] Lu S P, Zhang S H, Wei J, Hu S M, Martin R R. Time-

line editing of objects in video. IEEE Trans. Vis. Comput.

Graph., 2013, 19(7): 1218-1227.

[3] Xu K, Li Y, Ju T, Hu S M, Liu T Q. Efficient affinity-based

edit propagation using K-D tree. ACM Trans. Graph., 2009,

28(5): 118:1-118:6.

[4] Ma L Q, Xu K. Efficient antialiased edit propagation for

images and videos. Computers & Graphics, 2012, 36(8):

1005-1012.

[5] Liu J Y, Sun J, Shum H Y. Paint selection. ACM Trans.

Graph., 2009, 28(3): 69:1-69:7.

[6] Tong R F, Zhang Y, Ding M. Video brush: A novel in-

terface for efficient video cutout. Comput. Graph. Forum,

2011, 30(7): 2049-2057.

Yun Zhang et al.: Efficient Video Cutout by Paint Selection 477

[7] Hu S M, Chen T, Xu K, Cheng M M, Martin R R. Internet

visual media processing: A survey with graphics and vision

applications. The Visual Computer, 2013, 29(5): 393-405.

[8] Wang J, Cohen M F. Image and video matting: A survey.

Foundations and Trendsr in Computer Graphics and Vi-

sion, 2007, 3(2): 97-175.

[9] Agarwala A, Hertzmann A, Salesin D, Seitz S M. Keyframe-

based tracking for rotoscoping and animation. ACM Trans.

Graph., 2004, 23(3): 584-591.

[10] Bai X, Wang J, Simons D, Sapiro G. Video SnapCut: Ro-

bust video object cutout using localized classifiers. ACM

Trans. Graph., 2009, 28(3): 70:1-70:11.

[11] Kolmogorov V, Zabih R.What energy functions can be min-

imized via graph cuts? IEEE Trans. Pattern Anal. Mach.

Intell., 2004, 26(2): 147-159.

[12] Rother C, Kolmogorov V, Blake A. “Grabcut”: Interac-

tive foreground extraction using iterated graph cuts. ACM

Trans. Graph., 2004, 23(3): 309-314.

[13] Li Y, Sun J, Shum H Y. Video object cut and paste. ACM

Trans. Graph., 2005, 24(3): 595-600.

[14] Wang J, Bhat P, Colburn A, Agrawala M, Cohen M F. In-

teractive video cutout. ACM Trans. Graph., 2005, 24(3):

585-594.

[15] Shahrian E, Price B, Cohen S, Rajan D. Temporally coher-

ent and spatially accurate video matting. Comput. Graph.

Forum, 2014, 33(2): 381-390.

[16] Ju J L, Wang J, Liu Y B, Wang H Q, Dai Q H. A progressive

tri-level segmentation approach for topology-change-aware

video matting. Comput. Graph. Forum, 2013, 32(7): 245-

253.

[17] Zhong F, Qin X Y, Peng Q S, Meng X X. Discontinuity-

aware video object cutout. ACM Trans. Graph., 2012,

31(6): 175:1-175:10.

[18] Comaniciu D, Meer P. Mean shift: A robust approach to-

ward feature space analysis. IEEE Trans. Pattern Anal.

Mach. Intell., 2002, 24(5): 603-619.

[19] Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM

Trans. Graph., 2004, 23(3): 303-308.

[20] Huang H, Zhang L, Zhang H C. RepSnapping: Efficient

image cutout for repeated scene elements. Comput. Graph.

Forum, 2011, 30(7): 2059-2066.

[21] Kopf J, Cohen M F, Lischinski D, Uyttendaele M. Joint bi-

lateral upsampling. ACM Trans. Graph., 2007, 26(3): 96:1-

96:5.

[22] Lombaert H, Sun Y Y, Grady L, Xu C Y. A multilevel

banded graph cuts method for fast image segmentation. In

Proc. the 10th IEEE International Conference on Com-

puter Vision, Oct. 2005, pp.259-265.

[23] Bai X, Wang J, Simons D. Towards temporally-coherent

video matting. In Proc. the 5th MIRAGE, Oct. 2011, pp.63-

74.

[24] He K M, Rhemann C, Rother C, Tang X O, Sun J. A global

sampling method for alpha matting. In Proc. the 24th IEEE

Conference on Computer Vision and Pattern Recognition,

Jun. 2011, pp.2049-2056.

[25] Barnes C, Shechtman E, Finkelstein A, Goldman D B.

PatchMatch: A randomized correspondence algorithm for

structural image editing. ACM Trans. Graph., 2009, 28(3):

24:1-24:11.

[26] Zhang S H, Li X Y, Hu S M, Martin R R. Online video

stream abstraction and stylization. IEEE Transactions on

Multimedia, 2011, 13(6): 1286-1294.

Yun Zhang is an assistant profes-

sor in Zhejiang University of Media

and Communications, Hangzhou. He

received his B.S. and M.S. degrees

in computer science from Hangzhou

Dianzi University, Hangzhou, in 2006

and 2009 respectively, and Ph.D. degree

in computer science from Zhejiang

University, Hangzhou, in 2013. His research interests

include image/video editing and computer vision.

Yan-Long Tang is a Ph.D. candi-

date in College of Computer Science

and Technology, Zhejiang University,

Hangzhou. He received his B.S. degree

in applied mathematics from Shan-

dong University, Jinan in 2013. His

research interests include image/video

editing.

Ke-Li Cheng is a Ph.D. candi-

date in College of Computer Science

and Technology, Zhejiang University,

Hangzhou. He received his B.S. and

M.S. degrees in communication en-

gineering from Chongqing University,

Chongqing, in 2007 and 2010. His

research interests include image/video

processing.

