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Abstract
Robust curve design on surface meshes with flexible controls is useful in a wide range of applications but remains challenging.
Most existing methods fall into one of the two strategies: one is to discretize a curve into a polyline, which is then optimized,
and the other is to directly design smooth splines on meshes. While the former approach usually needs a sufficiently dense
sampling of curve points, which is computational costly, the latter approach relaxes the sampling requirement but suffers
from the lack of user control. To tackle these problems, we proposed a variational method for designing feature-aware B-
spline curves on surface meshes. Given the recent advances in shell space construction methods, we could relax the B-spline
curve inside a simplified shell mesh and evaluate its distance to the surface using equipped bijective mapping. To effectively
minimize the distance between the curve and the surface, with additional controls in the form of both internal and external
constraints, we applied the interior point method and adaptively inserted knots of the spline to increase its freedom and
adjust the weighting during the iterations. When the curve is close enough to the surface, it can be efficiently sampled at any
resolution and robustly projected to the surface. Experiments show that our method is more robust, has higher flexibility, and
generates smoother results than existing methods.

Keywords B-spline curve · Surface meshes · Feature aware · Knot insertion · Variational optimization

1 Introduction

Curve design is an important problem in computer graph-
ics and computer-aided geometric design. Although with a
solid theoretical foundation in Euclidean space, this problem
has different formulations in other spaces such as curved
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spaces (e.g., a triangle mesh). Such curves usually have
a wide range of applications such as mesh cutting, feature
specification, artistic design, manufacturing, virtual reality,
and computational geometry on surfaces. Besides some com-
mon properties shared with the Euclidean space such as
smoothness, interpolation, and possibly feature-awareness,
in a curved space it requires the curve to be confined on the
mesh surface (manifold constraint), which makes the prob-
lem more challenging.

To design such curves, most of the existing methods
address this problem by discretizing the curve into a poly-
line and then optimizing it to fulfill all the requirements, e.g.,
interpolation, smoothness, and manifold constraints. Based
on how to handle the manifold constraint, those methods
can be classified into different categories such as projection-
based [6, 9], smoothing-based [12] and parameterization-
based [13]. The computational cost of these methods largely
depends on the sampling density of the curve, so it could be
costly if the sampling is dense. However, if the sampling is
not sufficiently dense, it could lead to visually rough results.

Some other methods [18, 21] propose to design a smooth
spline curve to approach the mesh and discretize the curve
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in the last step. Spline curves can be considered as an exten-
sion of polylines with high-order smooth bases but require
fewer variables. Since spline curves are already smooth,
the key lies in how to constrain them on the surface. Most
methods design such curves by extending the De Casteljau’s
algorithm from Euclidean space to a manifold. While these
methods can ensure the smoothness of the curves, they are
hard to control, e.g., in the situation of interpolating given
points [18, 20]. Panozzo et al. [21] embed the manifold to
a high-dimensional Euclidean space, where B-splines can
be flexibly designed and smoothly projected to the surface.
However, the projection scheme is not robust and may fail in
some cases. Furthermore, none of these methods can design
feature-aware curves, e.g., geometric snakes [13].

In this paper, we proposed a novel approach for feature-
aware B-spline curve design on surface meshes. While
our approach is an extension of the shell-space-constrained
approach [9], for robustness and efficiency we parameterized
the ambient space of the surface into a simplified volumetric
shell mesh equipped with a bijective mapping [8] and per-
form an alternating geometry optimization and adaptive knot
insertion in the shell space. In summary, our contributions are
threefold:

1. We presented a robust and customized shell-space con-
strained approach for B-spline curve design on surface
meshes with flexible control.

2. We proposed a general feature-aware term which favors a
variety of applications and can be seamlessly incorporated
into the energy function for optimization.

3. We introduced a new knot insertion scheme, which is
guided by a feature function and based on the difference
between the curve and its projection.

2 Related work

The curve design problem on continuous and discrete man-
ifolds has been well studied in the last decades, and there
is a lot of literature related to this topic. Here our focus is
on curve design on discrete surface meshes. According to
the curve representations, existing methods can be classified
as either implicit or explicit. We mainly introduced explicit
methods, which directly design an explicit curve on the mesh
to meet several key constraints, e.g., smoothness, interpo-
lation, and manifoldness. Implicit methods are also known
as level set approaches, which need to solve a PDE (partial
differential equation) for a smooth scalar field on the mesh
with specific boundary conditions, and the curve is extracted
from its level set [1, 16, 17]. Such methods are robust, and
the designed curve is guaranteed to satisfy the manifold con-
straint, but at the expense of high computational cost. So such
methods are beyond the scope of this paper.

Unlike the Euclidean space situation, the key to designing
curves on surface meshes is to confine the curve to lie on
the surface. Most existing methods discretize the curve into
a polyline and iteratively optimize it to reach an ideal state.
Some of them eliminate the complicated manifold constraint
by using local single-patch parameterizations [13, 14] so that
they can flexibly design curves in the Euclidean plane and
map the results to the surface. However, it is usually not easy
to determine an appropriate part region for parameterization,
and the mapping distortion may also affect the results. Some
other methods relax the smoothness constraint while keeping
the manifold constraint and gradually smooth an initial curve
on the surface, driven by specific energy functions. Jung et al.
[10] extended the well-known active contour model from the
image space to surface meshes and diffused a closed poly-
line lying on the mesh edges by the snake energy. Ji et al.
[7] improved the results by allowing the curve to pass across
mesh faces, i.e., adaptively merging or splitting the vertices
on the polyline during the iteration. Lawonn et al. [12] fur-
ther smoothed the polyline by solving a weighted Laplacian
energy, which can reduce the geodesic curvature. Due to the
strict manifold constraint, these methods are robust but not
efficient and tend to plunge into local minimum. Some other
methods relax the manifold constraint, smooth the curve in
the ambient space and project the result to the surface. Hofer
et al. [6] defined a spline energy for the polyline and per-
formed energy minimization in the vicinity of the surface
by using the projection gradient method. Later, high-order
versions of spline energy are proposed and used for data fit-
ting on surface meshes with the same strategy [23]. Hofer et
al. [5] summarized the methods and showed their variety of
applications. However, the projection step relies on the local
fitting of moving least squares (MLS), which is usually time-
consuming andmay sacrifice robustness. Jin et al. [9] recently
applied shell space for robust distance evaluation and projec-
tion, which shares both advantages of smoothing-based and
projection-basedmethods. Their bottleneck lies in construct-
ing a shell meshwith proper thickness. Optimizing a polyline
on the mesh is straightforward and popular, but on the other
hand it has to predetermine the sampling density. Moreover,
the improper estimation of density may primarily affect the
smoothness of the curve or computational efficiency.

Instead of designing a polyline directly, some other meth-
ods generate a smooth spline approaching the surfacemeshes
and discretize it in the final step. Among them, most try
to extend the weighted averaging from Euclidean space to
manifolds. Park and Ravani [22] firstly extended De Castel-
jau’s algorithm to manifolds, where the control polygon is
represented with geodesic paths. Wallner and Pottmann [25]
generalized theEuclidean linear subdivision schemebyusing
the “geodesic averaging”method.Morera et al. [20] extended
the recursive De Casteljau bisection and proposed the geo-
metric Bézier algorithm. Sarlabous et al. [3] further proposed
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geodesic conic Bézier curves, which are suitable for com-
plicated geometries. Sharp et al. [24] recently proposed an
approach that achieves better computational performance on
the same algorithm [20] by using a fast geodesic computing
method. Furthermore, Mancinelli et al. [18] extended both
the recursive De Casteljau bisection and an open-uniform
Lane–Riesenfeld subdivision scheme, which achieves higher
performance. Such subdivision-basedmethods are robust but
lack flexible control over the curve. And none of them can
adapt to the feature of the mesh due to their forward design
manner, which limits their applications. Panozzo et al. [21]
embedded the mesh in a high-dimensional Euclidean space
to compute weighted averages, generated a B-spline there,
and mapped sampled points of the curve onto the surface by
Phong projection. The method can be formulated as a vari-
ational problem, and is flexible in terms of user control, but
the projection operator is not robust and it is hard to decide
how to project the whole curve on the surface.

To robustly control the curve on surface meshes, we rep-
resented the curve as a B-spline and formulate the curve
design problem in a variational way with the assistance of
shell space [9]. One of the key elements of our method is
the knot selection (number and positions) for the B-spline,
which is vital in data fitting. Common methods usually pre-
determine initial knots and adaptively adjust them during
iterations, e.g., changing knot positions [27], decreasing
[11] or increasing [15] number of knots. Kang et al. [11]
selected a set of active knots from a dense knot vector via a
sparse optimization. Liang et al. [15] selected knots accord-
ing to the constant increment of the feature integral, followed
by an iterative knot insertion scheme to improve the fitting
precision. Dung et al. [2] proposed a two-step method for
fast knot optimization. Yeh et al. [26] proposed a curvature-
based feature integral to guide the knot insertion. Mohanty
and Fahnestock [19] applied particle swarm optimization
combined with model selection to tackle the involved high-
dimensional and non-convex optimization. We incorporated
a new feature integral-based knot insertion scheme into the
optimization to drive the B-spline effectively to approach the
surfacemesh. Overall, compared to the polyline-basedmeth-
ods, our B-spline representation avoids the need to determine
the sampling density but retains the smoothness of the curve;
compared to the existing spline-based methods, ours are
robust, controllable, and feature-sensitive.

3 Problem and algorithm overview

Let S =< VS , FS > denote a self-intersection free and
orientable manifold triangle mesh embedded in Euclidean
space R

3, where VS and FS stand for the vertex and face
sets of the mesh. And the mesh possibly associates a scalar
field representing some user-defined features (depending on

specific applications), I : S → R. Our aim is to design
a “visually smooth” curve on the surface S interpolating a
sequence of points X = {xi ∈ S}Ni=1 while adapting to the
scalar field at the same time. The curve is already discrete
because it is embedded in the mesh surface. We thus defined
the “smoothness" of such curves discretely, analogous to the
case of continuous curves.

To solve the problem, instead of directly designing a dis-
crete curve like [6, 9], we used a B-spline to model the curve
here to improve the quality of results. Let the B-spline curve
be represented as, P(t) = ∑n

i=0 Ci Bi,k(t)with a knot vector
T = {t0, t1, . . . , tn+k+1}, whereP = {Ci }ni=0 ∈ R

3 are n+1
control points and B = {Bi,k(t)} are basis functions which
can be defined recursively as follows,

Bi,0(t) =
{
1 t ∈ [ti , ti+1)

0 otherwise
(1)

Bi,k(t) = t − ti
ti+k − ti

Bi,k−1(t) + ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t).

(2)

Similar to the geometric snakemodel [13], we could thus find
such a curve by solving the following variational problem,

min
P,T ,I

Eint(P, T ) + μEext(P, T , I)

s.t. max
t∈[0,1] D(P(t), S) < ε

P(tki ) = xi , i = 1, 2, . . . , N ,

(3)

where (tki , xi ) is the i
th pair of parameter and interpolatory

point and ε (e.g., ten percent of average length of the mesh
edges) is a small constant to ensure that the B-spline is suf-
ficiently close to the surface mesh.

One part of the objective Eint(P, T ) is the internal energy.
It considers the fairness of the curve and can be commonly
defined as the combination of �2 norms of the first and second
derivatives, which is also known as splines in tensions [6]:

Eint(P, T ) = 1

L2

∫ 1

0

(
λ‖P′(t)‖2 + (1 − λ)‖P′′(t)‖2

)
dt,

(4)

where L = ∑N−1
i=1 ‖xi − xi+1‖ is an approximation for the

length of the curve, and λ is the weight used to balance the
two terms. The energy for open curves is slightly different
from closed curves, and for the later case it should prescribe
continuous condition for the end points.

The other part Eext(P, T , I) is the external energy. It is
determined by the features defined on the mesh, which could
guide the curve to snap to the local extremum of the scalar
field. And it can be defined as:
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Eext(P, T , I) =
∫ 1

0
c (I (MS (P(t)))) dt, (5)

where MS is the projection operator which maps a curve
point to the mesh surface S, and c : R → R

+ ∪ {0} is
a composite function for the scalar field, which will all be
elaborated in the following sections.

The constraint in Eq. 3 is a relaxation of the manifold con-
straint, where D(P(t),S) is the distance function measuring
the distance from a curve point to the mesh surface and is
defined as:

D(P(t),S) = inf
p∈S

‖P(t) − p‖. (6)

By now, we could convert the constrained optimization (3) to
an unconstrained one by taking manifold and interpolation
constraints into penalties,

min
P,T ,I

Eint(P, T ) + μEext(P, T , I)

+ αEdist(P, T ) + βEfit(P, T )
(7)

where Edist(P, T ) is the energy term compositing the dis-
tance function (6) with a barrier function g. It maps the
distance value to a nonnegative value:R+ ∪{0} → R

+ ∪{0},

Edist(P, T ) =
∫ 1

0
g(D(P(t),S))dt . (8)

And Efit(P, T ) is the soft positional constraint with a big
weight β (e.g., β = 106 by default) to meet the interpolation
constraints,

Efit(P, T ) = 1

NL2

N∑

i=1

||P(tki ) − xi ||2, (9)

where 1
NL2 is used to make the energy term dimensionless.

To solve the optimization (7), we first gave the definition
of the distance function (6). Like [9], we built a discrete shell
space and defined an appropriate in-between scalar field to
approximately evaluate the point-to-surface distance. How-
ever, it is non-trivial to extend the algorithm [9] for B-spline
curves directly. Firstly, it is hard to obtain an initial B-spline
curve inside the shell, which is essential for the adopted inte-
rior point solver. Secondly, a valid shell mesh with a proper
thickness, i.e., without inverted elements, is difficult to build.
In certain circumstances, such a shell does not even exist,
which makes it impossible to design the curves. Thirdly, the
problem of selecting appropriate knots of the B-spline that
can reasonably fit the surface mesh should also be solved.

To this end, we built our approach upon the recently pub-
lished robust shell construction algorithm [8] and proposed
a new algorithm for the B-spline curve in such shells.

4 Our algorithm

Our algorithm consists of the following steps: scalar field
construction (Sect. 4.1), initial curve generation (Sect. 4.2),
followed by the alternating iterations between curve opti-
mization (Sect. 4.3) and knot insertion (Sect. 4.4), and finally
the obtained curve is robustly projected onto themesh surface
with defined mapping M when the distance error is below
the predetermined threshold to ensure that the curve is on the
surface. Algorithm 1 illustrates our whole algorithm.

Algorithm 1 B-spline curve design in the shell space
Require: a mesh S with a scalar field I, the shell space for S: �S , and

a sequence of interpolatory points: X = {xNi=1 ∈ S}.
Ensure: a feature-aware curve Q on the surface interpolating X.
1: Generate an initial B-spline curve with < P, T >(Sec. 4.2)
2: repeat
3: Update weights with Eq. (18)
4: Curve optimization: update P (Sec. 4.3)
5: Knot insertion: update T (Sec. 4.4)
6: until the stop conditions are satisfied
7: Project the B-spline curve onto the mesh
8: return the projected curve Q

4.1 Scalar field construction

For fast and robust evaluation of the distance value for a
given point near the surface mesh, it is helpful to construct a
foldover-free shell space tessellated with tetrahedrons sur-
rounding the surface mesh. Here, directly extruding two
layers of prism mesh from the surface by mesh deformation
might be prone to foldover tetrahedron elements. Instead,
we applied the shell meshes equipped with a bijective map
M on the shelf [8], which is proved to be robust experi-
mentally. Here, we briefly reviewed the method to make our
description self-contained. It starts from a trianglemesh, then
finds an ideal direction of extrusion for each vertex by a local
optimization, builds the prism shell with the calculated direc-
tions, and performs optimization to simplify it in topological
and geometric aspects. The final obtained shell meshes are
highly simplified, which hold the advantages of robustness
and efficiency for further computation (see Fig. 1).

The constructed shell mesh � is associated with a scalar
field f : � → R. In the setup, we specified the scalar values
for the vertices of the three layers, i.e., top ST , middle SM

and bottom SB of the shell as 1, 0,−1, respectively. More-
over, those points inside the shell can be linearly interpolated
based on the tetrahedron elements where they locate. Here,
we needed to calculate the distance from any point inside
the shell space to the surface mesh (8). Thus, we built a
new scalar field d(p) such that the scalar value of any point
inside as its distance to the mesh surface. In such a scalar
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(a) The input mesh (b) The simplified shell (c) Input mesh & Top (d) Input mesh & Bottom

Fig. 1 The simplified shell generated by Jiang et al. [8]

surface

Top(1)

Mid(0)

Bot(-1)

Fig. 2 Illustration of symbols h1, h2 defined in the shell, where the
calculation h1 depends on the relative positions between p and its pro-
jection MS(p) onto the surface mesh

field, the value for the boundary of the shell is set to 1, i.e.,
d(p)|p∈∂� = 1, and the original mesh surface S is set as
zero level set, i.e., d(p)|p∈S = 0. After that, the value d of
any point inside the shell can be obtained by linearly scal-
ing the original scalar field f . We would later composite the
scalar field with a smooth barrier function g with g(1) = ∞
to confine the curve inside the shell space. With the help of
the bijective map M between any pair of sections provided
by the shell, we could efficiently find the projection point
on the mesh surface of any sampled point on the curve p:
MS(p). Here, the subscript ofM denotes the section of the
projection, e.g., MT andMB are maps when the projection
sections correspond to the top and bottom layers.

In detail, we calculated the new scalar value for the point
p as the relative distance between p and its projectionM(p),
D(p,S) = d(p) = h2/h1, where h2 = | f (p)− f (MS(p))|
denotes the absolute difference of the scalar values between
p and MS(p), and h1 indicates the thickness of the shell at
the projection point MS(p). An illustration can be seen in
Fig. 2. In all, the new scalar field can be calculated as follows,

d(p) =
⎧
⎨

⎩

f (p)− f (MS (p))
1− f (MS (p))

if f (p) ≥ f (MS(p))

f (MS (p))− f (p)
1+ f (MS (p))

otherwise
. (10)

As illustrated, the two situations are based on the relative
positions of p and MS(p). The scaling ensures that points
on the mesh surface are of 0 distance, and points on the top
and bottom sections have distance of 1, and other points are
assigned linearly in between.

To compute h1 and h2 for the point pi sampled from the
curve, we first needed to find the tetrahedronwhere it locates.

Instead of directly searching for the element by anAABB tree
[8], we adopt a more robust and efficient scheme that uses
the information of the previous sampling point pi−1 on the
curve.We traced the ray pi−1pi from the element where pi−1

locates and find all the intersection points of tetrahedrons
until it reaches the endpoint pi .

During the subsequent optimization, we had to further
composite the new scalar field with a barrier function g as
introduced in (8), so as to constrain the curve inside the shell
space. We thus selected the function which enjoys nice prop-
erties as introduced in [9]:

gh(x) = π

2h
x tan

( π

2h
x
)

, x ∈ [0, h). (11)

In the equation, the threshold h denotes the upper bound of
the scalar value for the curve P(t), which can be calculated
as follows:

h = min{max
ti

d(P(ti )) + εb, 1} (12)

where εb is a user prescribed small positive value used for
better numerical stability and is set to 0.02 by default.

4.2 Initial curve generation

An initial B-spline curve is required to lie inside the shell
space to bootstrap the iterative optimization procedure. How-
ever, it is challenging to generate a B-spline strictly inside the
given shell with a theoretical guarantee. Hence we present
a practical scheme by using the convex hull property of the
B-spline, i.e., a B-spline curve is contained in the convex hull
of its control polygon, which helps to alleviate the problem.
We adaptively built a control polygon inside the shell space
for the initial B-spline curve. In practice, we kept the first and
last interpolatory points, i.e., x1, xN fixed. Then, we sequen-
tially and alternately projected the remaining points to the
top and bottom layers of the shell as its control points with
the bijective maps {MT,MB}. If the segment between any
two adjacent control points intersects the boundary of the
shell, calculate the Dijkstra path between the corresponding
interpolatory points on the mesh. And the middle point xm
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Start point

End point

Top

Mid

Bot

(a) The control polygon intersects with the shell boundary

Start point

End point

Top

Mid

Bot

(b) Final control polygon and the initial curve

Fig. 3 Illustration of generating an initial curve. The Dijkstra path, interpolatory points, control points and the initial curve are marked in red, blue,
green and yellow, respectively

on the path is then projected to the boundary. Finally, we
inserted a new point into the sequence of the control points.
This procedure repeats until no segment intersects the shell
boundary. The pseudo-code of the algorithm can be seen in
Algorithm 2, and an illustration is also shown in Fig. 3).

We have found rare failure cases in a large number of
experiments. For robustness consideration, we assumed that
parts of the curve have the chance of being out of the shell.
In that case, we thus redefined the scalar field d by scaling it
with a ratio η to avoid infinity value when it is composited
with the barrier function, i.e., d(p) ⇐ ηd(p) (η = 0.99 in
default). We set the scalar value of each point outside the
shell the same as that on the boundary. In such a setting,
the value of the barrier function on or out of the boundary
becomes a finite value, i.e., gh(Sb) = gh(St ) = gh(η),
which is beneficial for further optimization. The projection
of the point p outside can be defined in the same way as
that of the projection of its nearest pointNP(p) on the shell
boundary, i.e. MS(p) = MS (NP(p)).

Note that the shell may contain singularity vertices whose
1-ring neighboring triangles do not associate prism elements,
and thus no scalar field is defined there. If a curve crosses
over such regions with a segment 〈P(tk1),P(tk2)〉, we set
the scalar value for the point P(t)

(
t ∈ (tk1 , tk2)

)
by linear

interpolation:

d (P(t)) = tk2 − t

tk2 − tk1
d

(
P(tk1)

) + t − tk1
tk2 − tk1

d
(
P(tk2)

)
. (13)

4.3 Curve optimization

With a fixed knot vector T , we could numerically solve the
optimization problem (7). Though we could calculate the
energy term Eint (4) by using an analytical method since the
B-spline curve has a closed-form expression, we instead dis-
cretized both differentialswith the finite differencemethod to
reduce computation time, i.e. P′(ti ) = (qi−qi+1)/(ti−ti+1).

Therefore, we evenly sampled points on the parametric
line, T′ = {t ′i }, as well as the corresponding points on the

Algorithm 2 Control polygon generation for the initial B-
spline
Require: a mesh S with a shell space �S , and a sequence of interpo-

latory points X = {xNi=1 ∈ S}.
Ensure: a control polygon C inside the shell space �S .
1: C := {c1 = x1}
2: f lag = f (x2) > 0 ? 1 : 0
3: for j := 2, · · · , N − 1 do
4: c j := f lag ? MT(x j ) : MB(x j )

5: f lag := ! f lag
6: if c j−1c j ∩ ∂�S = ∅ then
7: R := Dijsktra(x j−1, x j )

8: xm := Mid
(
R(x j−1, x j )

)

9: cm := f lag ? MT(xm) : MB(xm)

10: C := C ∪ {cm}
11: f lag := ! f lag
12: c j := f lag ? MT(x j ) : MB(x j )

13: f lag := ! f lag
14: while cmc j ∩ ∂�S = ∅ do
15: xm := Mid

(
R(xm , x j )

)

16: cm := f lag ? MT(xm) : MB(xm)

17: C := C ∪ {cm}
18: f lag := ! f lag
19: c j := f lag ? MT(x j ) : MB(xi .e. j )
20: end while
21: end if
22: C := C ∪ {c j }
23: end for
24: C := C ∪ {xN }
25: return C

curveQ = {qi = P(t ′i )}. We then discretized the integrals of
all energy terms by Gaussian quadrature. Suppose M points
are sampled on the curve, and each point is associated with a
segment. The integral on each segment can be calculated by
sampling new points and accumulating their quantities.

Thus, we could discretize the internal energy Eint (4) as
follows:

Eint(P) = 1

ML2

M∑

i=1

M ′
∑

j=1

ω j (λ‖P′(t ′i, j )‖2+

(1 − λ)‖P′′(t ′i, j )‖2),
(14)
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whereω j is theweight ofGaussian quadrature.With the same
quadrature scheme, the external energy Eext (5) can also be
rewritten as:

Eext(P, I) = 1

M

M∑

i=1

M ′
∑

j=1

c
(
I

(
M

(
P(t ′i, j )

)))
. (15)

And the distance energy is discretized as well:

Edist(P) = 1

M

M∑

i=1

M ′
∑

j=1

ω j gh(d(qi, j )). (16)

To minimize (7), we adopted the interior-point method.
Starting from an initial B-spline curve (Sect. 4.2), we iter-
atively updated the positions of control points by using the
Newton’s solver with the following step:

Pm+1 ←− Pm + αmH
−1
m ∇E(P, T ), (17)

where Hm is the 3(n + 1) × 3(n + 1) Hessian matrix of
E(P) evaluated at Pm , m is the index of the iteration, and
αm ∈ (0, 1] is the step size calculated with the backtracking
line search strategy. In each iteration,we needed to frequently
find the tetrahedron in which each updated sampled point is
located. Based on the observation that the next sampled point
is likely to be located to the same or neighboring tetrahedron,
we thus adopted the ray-tracing method instead of spatial
searching (e.g., an AABB tree), e.g., tracing the tetrahedron
from the ray’s starting point to its ending point by computing
all the intersections between the ray and shell cells. This
method is faster than spatial searching [8] since we used
a simplified shell, and reduces the number of intersections
while brings considerable efficiency improvements.

It is easy toverify that the energy terms Eint(P), Eext(P, I)

and Efit(P) are all quadratic w.r.t. P , and the term Edist(P)

is also convex. Thus, the Hessian of the whole energy H is
positive-definite and its inverse H−1 in (17) always exists
during the iterations. This nice property ensures the conver-
gence of the optimization.

Equation (7) has several weighting parameters. For dif-
ferent cases, users may need to adjust these parameters
accordingly to achieve convergence. To make this process
more robust,we applied an adaptiveweighting schemebefore
the new optimization. By fixing the weight of the energy
terms Eint and Eext, we adaptively updated the weight of the
term Edist as follows:

αnew = min

{

αmin max

{
Eint + μEext + βEfit

Edist
, 1

}

, αmax

}

,

(18)

where we heuristically set αmin = 1, αmax = 108. To satisfy
the interpolation constraint, we could also adaptively adjust
the weight of Efit by using a similar scheme as above, where
we set βmin = 10, βmax = 1010 heuristically.

4.4 Knot insertion

It is known that a fixed number of knot points determined
at the beginning may not be sufficient to optimize the curve
to be close enough to the mesh surface. We thus present
an adaptive scheme to insert new knot points to increase the
degree of freedom and optimized its distribution while fixing
the B-spline curve P . Inspired by the recent knot-insertion
work [15, 26], where they use a feature function to guide
the insertion operation, we defined a new feature function
specifically for our problem.

We denoted the projection of the B-spline curve on the
surface as “shadow curve", which is considered the optimal
approximation on the mesh or the ground-truth curve. We
thus measured the difference between the B-spline curve and
its shadow curve, with which a feature function, known as
cumulative distribution function (CDF) can be defined:

F(t) =
∫ t

0
λ‖P′(t) − Q′(t)‖2dt+

∫ t

0
(1 − λ)‖P′′(t) − Q′′(t)‖2dt+

∫ t

0
αg(d(P(t)))dt,

(19)

where Q(t) is the shadow of P(t) on the mesh surface.
The above-defined CDF tells us the information about the

amount of difference, which can be used to guide the inser-
tion operation. Intuitively, more knots should be inserted for
intervals with a more significant difference and vice versa.

In practice, we carried out Gaussian quadrature for the
integral (19) and calculate the feature value for each knot
interval:

�Fi = F(ti+1) − F(ti ). (20)

We then divided �Fi equally into several sub-intervals and
inserted knots at the position of the corresponding points, as
illustrated in Fig. 4a.

We computed the integration for each knot interval to sim-
plify the computation and determine the number of newknots
in the interval (ti , ti+1). The number of new knots that need
to be inserted to the interval is calculated as �Fi/�avgF .
Then, the new knots are placed uniformly in each interval
(see Fig. 4b).

�avgF =
∫ 1

0
F(t)dt/l, (21)
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0 0.2 0.4 0.6 0.8 1 1.2

(a) Gaussian integral of continuous function

0 0.2 0.4 0.6 0.8 1 1.2

(b) Gaussian integral in discrete case

Fig. 4 The CDF is divided by several constant functions (Red) of the interval�F , so that knots can be placed at the breakpoints of their intersections
(a). The number of new knots in an interval is the number of intersections between CDF (blue and constant functions (Red)) (b)

l = r Nint, (22)

where Nint is the number of intervals and r is a user prescribed
weight (r = 1 by default).

To avoid inserting too many knots, we rejected a knot into
the interval with a small span:

ti+1 − ti < εint, (23)

where εint is the minimal span of an interval. And we applied
the following three stopping conditions for the adaptive knot
insertion:

1. The integral value of all intervals is less than the threshold
εd ;

2.
∣
∣�Fn+1 − �Fn

∣
∣ < εd (n is the iteration index);

3. ti+1 − ti < εint for all intervals (no knot can be inserted
any more).

Iterations stop when any of conditions are met.
When the B-spline curve is close enough to the mesh sur-

face, we needed to project it to the surface to obtain a polyline
with the operator provided by Jiang et al. [8]. To ensure the
curve being strictly on the surface, we had to sequentially
project each sampled segment pipi+1 to the mesh S. If the
projected segmentM(pi )M(pi+1) is not on the same mesh
face, we tookM(pi ) as the starting point and projected pi+1

to that face so as to find the the intersection point p′
i between

the new segment and the face boundary. Then we inserted
p′
i to the polyline and took it as the new starting point, and

repeated the procedure until the intersection point p′
i and

M(pi+1) share the same face.

5 Experiments

We implemented the above algorithm as a single-threaded
C++ application on a PC equipped with a 4.1 GHz Intel Core
i5 CPU and 32GB of RAM. Linear algebra-related com-
putation is carried out by Eigen lib [4]. We validated our
algorithm on many meshes and compared it with state-of-
the-art works. In the experiment, we set default parameters
as follows, μ = 1, r = 1, k = 3, which works well in most
cases.

To validate the convergence behavior of our algorithm, we
tested several examples (some results can be seen in Figs. 14c
and 15d) and drew their energy-value graphs during the iter-
ations (see Fig. 5). In the figure, the dotted lines (peaks of
curves) indicate the new starting points of the optimization,
where the energy values change sharply. This is because new
knots are inserted, the weights of energy terms are updated.
In each round of optimization, we solved a convex problem
that guarantees convergence.

In practice, the initial curves generated by our scheme
rarely appear to be outside the shell space (4.2). But we
provided the scheme to handle the case when parts of the
initial curve are outside. And it can still succeed to optimize
practically. Figure 6 shows two of the examples which are
constructed by omitting the adaptive knot insertion scheme
(Algorithm. 2), and our algorithm is capable of optimizing
both curves to the state that lies on the mesh surface.
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(a) Energy graph for the armadillo model

  V
al

ue
s

_
_

1

(b) Energy graph for the cup model

Fig. 5 The convergence graphs of two curves. The peaks denote the starting points of the new optimization

(a) Initial curve I (b) Final curve I (c) Initial curve II (d) Final curve II

Fig. 6 Two examples whose initial curves are partially outside the shell space

(a) Curves on the horse head model (b) Curves on the lion model (c) The curve on the Maitreya model

Fig. 7 Comparison result with the method [21]. The red and purple curves are results of ours and the method [21], respectively

5.1 Curve design without scalar fields

When the parameter μ in (7) is set to zero, i.e. the scalar
field is not considered, our algorithm degenerates to solving
the traditional curve interpolation problem on a surface. We
showed several examples that benefits from our algorithms
in the following sections.

Our algorithm can control the curve shape flexibly by tun-
ing the parameter λ. Figure 9 shows the results for both open

and closed curves by adjusting λ from 1 to 0. It can be seen
that the results present approximated piece-wise straightest
paths when λ = 1 for both cases, which is in line with
the explanation of [6, 9]. As λ decreases, the effect of the
�1 norm derivatives gradually becomes dominant, and the
resulted curves become smoother.

Our algorithm can generate B-spline curves with different
orders on the mesh surface. Figure 10 displays the results of
curves with order k = 2, 3, 4 for the same set of interpola-
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(a) The open curve on the Maitreya model (b) The open curve on the homer model

Fig. 8 Comparison with the method [24]. The left sub-figure is the result of method [24], where the control points, control polygon and the Bézier
curve are colored in blue, yellow and red, respectively. The blue points are the interpolatory points of our method. The red curve is the resulting
curve

(a) λ = 0 (b) λ = 0.4 (c) λ = 0.7 (d) λ = 1

Fig. 9 Curves with different values of λ on the face model for both open and closed curves

(a) 2nd-order (b) 3rd-order (c) 4th-order

Fig. 10 Comparison of generated B-splines with different orders but
the same set of interpolatory points

tory points (λ = 0.5). It can be seen that the shapes of the
three curves are very similar in general. However, we found
that fewer knots are sufficient for higher orders, in this case
they need 113, 91, 59 knots, respectively. It is consistent with
the fact that higher order curves are more flexible, and thus
can interpolate the same set of points with fewer knots. Not-
ing that B-splines with higher orders may produce unstable
results for designing feature-aware curves.

Our algorithm produces similar results on the samemodel
with different resolutions. An example can be seen in Fig. 11,
where the same set of interpolatory points are prescribed in
two bunnymodels. The results show that the open and closed
curves on the two meshes display visually similar shapes.
This demonstrates that the resolution of the mesh has little
impact on the designed curve by our method.

Our algorithm has several advantages over polyline-based
algorithms. We compared our approach with the state-of-

(a) Low-resolution result (b) High-resolution result

Fig. 11 Comparison of results with the same interpolatory points on
meshes and different resolutions. The left bunny has 3485 vertices and
6966 faces, while the right bunny has 34834 vertices and 69451 faces

the-art algorithm [9]. Figure 12 shows the results, where the
curves of both algorithms are densely sampled with a sim-
ilar number of points. Both results are nice, but ours are
slightly smoother near the interpolatory points. Besides, our
algorithm can sample points on the calculated smooth spline
curve in high resolutions at a meager cost. In contrast, it
will take much time for the algorithm [9] since it needs to
recompute the curve with more variables. In Fig. 12a, we
set λ = 0.5 and M = 200. After the B-spline curve is gen-
erated, we resampled 5132 points on it. The whole process
costs 320ms, but it takes 731ms to generate the curve with
the same number of sampling points for [9]. A similar result
can also be seen in Fig. 12b, where the two curves are sam-
pled with a relatively low rate, e.g., 600( [9]) and 584(ours)
points in Fig. 12b, respectively.
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(a) Curves on the Venus

model.

(b) Curves on the bumpy sphere

model

(c) Curves on the fish model (d) Curves on the pig model

Fig. 12 Comparison results with the method [9]. Curves of our method and Jin et al.’s method [9] are colored in red and yellow, respectively

(a) The initial curve ([17]) (b) Generated Curves

Fig. 13 Comparison results with the heat-flow method [17]

Next, we designed curves on meshes with a lower sam-
pling rate. Examples can be seen in Fig. 12c, d, where 358
([9]) and 288 (ours) points are sampled, respectively, for
the former, and 165 ([9]) 119 (ours) for the later. It shows
that our algorithm can still keep smoothness even though the
sampling rate of the curve is remarkably reduced, while the
algorithm [9] suffers from obvious aliasing problems.

Compared to the implicit algorithms, e.g., heat-flow based
method [17], our algorithmcanbe used to design complicated
curves with self-intersections (see the red curve in Fig. 13b),
while the implicit algorithms cannot handle such cases (see
the green curve in Fig. 13a, b) because the curve is extracted
from the level set of a certain smooth scalar field. Besides,
our algorithm can generate much smoother results than [17],
since in their method smoothness of the result depends on
the mesh resolutions.

As is known, splines have excellent properties and are fre-
quently used to design curves on meshes. We thus compared
ours with some representative works [21, 24] to show the
advantages of our approach. The algorithm [21] can be used
to design B-spline curves on the embedded high-dimensional
Euclidean space, and it can generates similar results as our
method (Fig. 7). However, their algorithm projects the sam-
pled points onto themesh but cannot guarantee that thewhole
curve is on themesh.Moreover, the projection operator is not
robust. As is shown in Fig. 7a, b, both curves generated by
[21] break at local segments due to the projection failure
while ours can always keep the continuity of the curve which

is guaranteed by the robust projection M. Another example
is shown in Fig. 7c, where their algorithm fails to obtain the
whole curve, whereas our approach successfully generates
curves with good quality. We then compared our approach
with the algorithm [24] which computes geodesic Bézier
curves via the generalized De Casteljau method. However,
this kind of approach lacks user controls, e.g., interpolating
given points (Fig. 8a), adjusting curve shapes, and designing
smooth closed curves (Fig. 8b). Moreover, none of them [21,
24] can extend to capture the feature of a mesh via a given
scalar field.

5.2 Feature-aware curve design

With the equivalent distance field defined in shell space, our
algorithm can be extended and used to design feature-aware
curves by simply augmenting solely mesh-dependent ener-
gies. Users can design specific scalar fields on the mesh in
different applications. Our algorithm can drive the curve to
regions with lower scalar values while keeping other con-
straints. Next we gave several examples.

In the first example, feature lines are needed to capture in
concave regions on mesh. We thus applied normal variations
of the neighboring faces to associate a scalar value at each
vertex of the mesh [13] as follows,

I(v) = min
f

{
nTv n f

}
, (24)

where nv is the normal of vertex v and n f is the normal of
its neighboring face f . And the composite function c(·) is
defined as a square function, e.g., c(x) = x2. The result
can be seen in Fig. 14, where after augmenting the feature-
aware external energy, the algorithm can snap the curve to the
feature region well for both the octopus (eyeballs in Fig. 14b)
and armadillo (pectoral muscles in Fig. 14d) models.

In the second example, we had to extract sharp fea-
ture lines of meshes. We then set another feature field,
i.e. maximal principal curvature field on the mesh, and the
composition of the scalar value for each vertex v is defined
as,
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(a) Result with μ = 0 (b) Result with μ = 1 (c) Result with μ = 0 (d) Result with μ = 1

Fig. 14 Results of the designed curves on the octopus and armadillo models with and without the external energy. The color maps denote the
defined scalar fields

(a) Result with μ = 0 (b) Result with μ = 1 (c) Result with μ = 0 (d) Result with μ = 1

Fig. 15 Results of the designed curves on the finger and cup models with and without the external energy. The color maps denote the defined scalar
fields

c(I(v)) = e−κmax(v), (25)

where κmax is the maximal principal curvature. The curves
on both the finger nail model (Fig. 15a) and vase model with
geometric textures (Fig. 15c) are generated by ignoring the
feature-aware energy, and they cannot capture the features.
In contrast, after considering the feature energy, the curves
on both models exactly correspond to the features, as shown
in Fig. 15b and Fig. 15d).

In the third example, we designed a curve in the pres-
ence of obstacles on the mesh surface to avoid the obstacles.
To achieve such a goal, we constructed a scalar field where
large scalar values are set on the obstacle regions R and zero
values for the remaining regions. To encourage stable con-
vergence for our algorithm, we calculated a smooth scalar
field in obstacle regions by solving Bi-Laplacian equations
under boundary conditions to propagate the boundary values
to the inner region:

�2I = 0, I|∂R = s, ∇I|∂R = n, (26)

where n is the vector field defined on the boundary of
the obstacle regions and is perpendicular to the boundary.
Figure 16a shows the scalar field calculated by the above
equation, where the red-colored region denotes the obstacle
corresponding to the yellow region in Fig. 16b. We selected
four interpolatory points between two obstacles. Moreover,
the curve generated by our feature-aware algorithm avoids
them successfully (Fig. 16c) while it crosses the obstacles

(a) scalar field (b) μ = 0

(c) μ = 1

Fig. 16 An obstacle avoiding example

by using the algorithm without the feature-aware energy
(Fig. 16b).

5.3 Performance

The main computational cost of our algorithm mainly con-
sists of two parts. One is the step of curve updating. Our
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Fig. 17 A gallery of models and
spline curves created with our
method

Table 1 Statistics: The columns from left to right show the number of
vertices of mesh models (interpolatory points), knots for the initial and
the final curve, and the computational times

Model #V/N Knots (I) Knots (F) T (s)

Ghost (Fig. 17) 1K(7) 10 32 0.073

Bunny (Fig. 11a) 3K(4) 8 34 0.098

Squirrel (Fig. 10b) 8K(10) 23 91 0.863

Elephant (Fig. 17) 24K(4) 9 51 0.497

Armadillo (Fig. 14c) 50K(6) 11 23 1.023

Cup (Fig. 15c) 300K(7) 11 39 3.228

Cup (Fig. 15d) 300K(7) 11 71 50.981

algorithmhas fewer variables than polyline-basedmethods in
general. However, it requires additional efforts for knot inser-
tion and re-optimization of the curve, which needs to change
the matrix structure of Hessian and pay much cost in solving
Newton’s step (17). The other is the step of projecting any
point inside the shell to the mesh surface, which is required
in evaluating point-to-surface distance and the scalar value
of the point. Though the AABB tree has accelerated the pro-
jection, frequent evaluations especially on high-resolution
meshes still take much time. Table 1 shows the performance
of our algorithm for some of the testing examples (most of
other examples cost around 1s). As is seen from the table,
mesh resolution andknot number of the curveprimarily affect

the efficiency.Moreover, the feature-aware algorithm usually
takes more time than the version without it. It is because the
former one needs to calculate the scalar values for the sam-
pling points, which involves projection.

5.4 Applications

Our curve design method is robust and flexible and can
be used in many applications, e.g., drawing patterns, fea-
ture extraction, cutting holes, and segmentation on surface
meshes. Here we provided more pattern drawing and fea-
ture extraction examples on different models, as shown in
the gallery (Fig. 17).

6 Conclusion

We proposed a variational B-spline curve design algorithm
on surface meshes by using the scalar field defined in the
shell space. The algorithm can robustly generate a smooth
feature-aware curve at any resolution. It is also flexible for
different controls, e.g., shape of the curve, interpolations, etc.
Although our adaptive knot-insertion scheme is effective in
practice, we had not dived into an optimal scheme for knot
optimization. And how to insert as few knots as possible and
optimize their positions is our future work.
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