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A B S T R A C T

Traditional implicit curve modeling methods on surface meshes, such as variational ap-
proaches, are often plagued by numerical instability and heavy reliance on mesh quality,
severely limiting their reliability in practical applications. To address these challenges,
we propose Neural Implicit Curve Modeling on Meshes (NICMM), a novel framework
that integrates Physics-Informed Neural Networks (PINNs) with geometric constraints
for robust curve design. NICMM leverages physics-driven loss functions to encode
positional, smoothness, and feature-aware constraints, effectively mitigating numeri-
cal divergence caused by low-quality meshes. The framework introduces a two-stage
training strategy combining pre-training with rapid convergence optimization, and in-
corporates specialized modules (e.g., Efficient Channel Attention and Light GLU) to
enhance feature extraction and computational efficiency. Extensive experiments on the
SHREC16 dataset demonstrate that NICMM outperforms traditional variational meth-
ods in robustness, achieving high-fidelity curves even on degraded meshes with elon-
gated or near-degenerate elements. Furthermore, NICMM supports feature-aware curve
design, enabling alignment with user-specified regions and obstacle avoidance through
a unified guidance mechanism. This work establishes a new paradigm for manifold
curve modeling, with significant potential in CAD/CAM systems, virtual surgery, and
other domains requiring precise and adaptive geometric design.
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1. Introduction

Curve design is a classical and fundamental topic in
Computer-Aided Geometric Design (CAGD) and Computer
Graphics (CG), boasting extensive applications across diverse
domains. It plays a crucial role in industrial product de-
sign and manufacturing, powering CAD/CAM systems, and
is also fundamental in graphics and image processing. After
decades of dedicated research, the theories and methodologies
for curve design within Euclidean space have matured signifi-
cantly, reaching a state of well-established sophistication. Nev-
ertheless, this field continues to evolve dynamically, attracting
sustained research attention in recent years. Notably, there has
been a surge of interest in curve shape control methods, as ev-
idenced by studies such as [35, 39, 24], and their practical ap-
plications, as explored in [25].

Driven by pressing industrial demands and rapid advance-

ments in hardware and software technologies—especially the
burgeoning field of Artificial Intelligence Generated Content
(AIGC), the acquisition and utilization of 3D models have be-
come increasingly accessible and widespread. This digital revo-
lution has, in turn, spurred the in-depth development of theories
and techniques in digital geometry processing centered around
3D models. Among the plethora of emerging research topics,
curve design on non-Euclidean surface meshes, which involves
generating curves embedded within a given curved space, has
emerged as a particularly important and vibrant area of inquiry
[28, 13, 18]. This research endeavor holds profound theoreti-
cal significance and a broad spectrum of practical applications,
including mesh segmentation and cutting [33, 5], Voronoi di-
agrams computation on manifold [36], shape analysis, virtual
surgery [31], numerical control (NC) tool path generation [15],
and vector graphs [22].
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Despite its potential, designing curves on discrete curved 2-
manifolds, such as surface meshes, presents a unique set of
challenges. Unlike free-form curves in Euclidean space, these
curves are typically represented as piecewise-linear polylines
intricately embedded within the manifold structure. Existing
approaches to this problem can be systematically categorized
into two primary paradigms: explicit and implicit methods. Ex-
plicit methods directly model the curve using techniques such
as projection [11], smoothing [16], parameterization [17], or
spline-based approaches [20]. These methods offer a degree of
flexibility comparable to that of a Euclidean curve design while
striving to satisfy constraints related to smoothness, manifold
embedding, and interpolation. However, in their attempts to
enforce the critical manifold constraints, they often encounter
issues such as compromised curve quality, manifested as lo-
cal distortions, poor robustness due to high sensitivity to mesh
noise, and limited numerical stability, which is heavily depen-
dent on the quality of the input mesh. In contrast, implicit
methods operate by constructing scalar fields through the so-
lution of partial differential equations (PDEs) or variational for-
mulations [1] and subsequently extracting level-set curves from
these fields. By their very nature, these methods bypass mani-
fold constraints and the problem of self-intersections, enabling
the generation of high-quality curves [38]. Nevertheless, since
they rely on non-linear numerical computations performed on
discrete meshes, their numerical stability is highly contingent
upon mesh quality. Poorly shaped mesh elements can easily
lead to numerical instabilities, thereby undermining the overall
robustness of the algorithms.

To overcome these persistent challenges, our research di-
verges from traditional numerical optimization-based strategies
and delves into the realm of physics-driven geometric deep
learning and modeling for implicit curve design on surface
meshes. Central to our approach is the utilization of implicit
modeling, which effectively sidesteps the complexities asso-
ciated with manifold constraints and self-intersections, issues
that frequently degrade curve quality and inflate computational
complexity. Moreover, by harnessing the Physics-Informed
Neural Network (PINN) framework [30] for geometric deep
learning, we introduce a novel network architecture named
Neural Implicit Curve Modeling on Meshes (NICMM). This
network not only enables fine-grained multidimensional control
over implicit curves but also significantly enhances the overall
robustness of the algorithm, marking a significant advancement
in the field of curve design on surface meshes.

2. Related Work

Designing curves on manifold surfaces constitutes a funda-
mental and longstanding problem within the realm of geomet-
ric computation. In light of the diverse ways manifold surfaces
can be represented, existing research on this topic can be com-
prehensively classified into two principal approaches. The first
approach pertains to curve design on smooth manifolds, typi-
cally modeled using parametric surfaces, while the second fo-
cus on discrete manifolds, which are commonly represented as
meshed surfaces. For the purposes of this paper, our exclusive

focus lies on the latter, namely, curve design on surface meshes.
This area of research can be further delineated into explicit and
implicit methodologies, each with its own unique characteris-
tics and applications.

2.1. Explicit Modeling Methods

Explicit methods directly represent and model curves, cap-
italizing on the rich corpus of concepts and techniques estab-
lished for curve design within Euclidean spaces. These method-
ologies have emerged as the dominant paradigm for curve mod-
eling in discrete manifolds. The core challenge lies in ensuring
that the designed curves not only uphold fundamental geometric
properties but also adhere rigorously to the constraints imposed
by the manifold surface. Typically, these approaches employ in-
trinsic or extrinsic optimization strategies to sculpt the curves,
incorporating a diverse array of techniques such as parameteri-
zation, smoothing, projection, and spline extension.

Parameterization-based approaches map the discrete mani-
fold surface onto the Euclidean plane, design the curve within
the Euclidean domain, and then map it back to the original sur-
face. For example, Lee et al. [17] performed local parame-
terization of the regions surrounding the initial curve and uti-
lized the ”geometric snake” model to evolve the curve shapes
in the parameter domain. Building on this concept, Lee et al.
[18] proposed using an energy formulation based on ”intelli-
gent scissors” to design curves in the local Euclidean space,
which were subsequently applied for mesh cutting operations.
Although these methods are generally efficient, they are mainly
limited to the design of curves in local areas. Moreover, they are
prone to parameterization-induced distortion, which can signif-
icantly degrade the quality of the curve when applied to larger
areas.

Smoothing-based methods define energy functionals that di-
rectly characterize the shape of curves on surface meshes and
evolve these curves through optimization processes. Jung et
al. [12] extended the active contour model originally devel-
oped for images to surface meshes, proposing an energy func-
tion that integrates both the curve geometry and the mesh fea-
tures for curve optimization. However, the generated curves
are restricted to mesh edges, resulting in suboptimal smooth-
ness. Ji et al. [10] improved the active contour model by re-
laxing the constraint of curve nodes on mesh edges and intro-
duced topological operations such as splitting, moving and re-
moval of nodes during geometric optimization to enhance curve
smoothness. Lawonn et al. [16] constructed a Laplace opera-
tor for mesh curves, aiming to reduce geodesic curvature via
Laplacian smoothing; however, this approach requires exten-
sive iterations, incurs high computational costs, and struggles
to support interpolation constraints. More recently, Pawellek et
al. [28] introduced a distance-based smoothing method, which
embeds triangular meshes in four-dimensional Euclidean space
and computes geodesics on the lifted surface to achieve curve
smoothing, which ensures convergence and maintains a close
approximation to the initial curves. Despite their general ro-
bustness, these techniques face challenges in precisely defining
energy functionals for effective curve control due to manifold
constraints. Additionally, their high computational complexity
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often leads to vulnerability to suboptimal local minima, degrad-
ing the quality of the curves.

Spline extension methods seek to generalize spline theories
from Euclidean space to discrete manifolds under Riemannian
metrics. Mancinelli et al. [24] recently provided a compre-
hensive review of such approaches. Wallner et al. [31] ini-
tially replaced Euclidean linear averages with geodesic means
using geodesic metrics, generalizing subdivision curve meth-
ods to manifold surfaces, albeit with relatively time-consuming
computations. Morera et al. [26] developed subdivision curves
based on a novel geodesic averaging method that reduced the
number of geodesic computations. Mancinelli et al. [23] de-
signed Bézier curves in discrete manifolds by employing an im-
proved recursive De Casteljau algorithm and the Lane - Riesen-
feld subdivision scheme, effectively addressing discontinuity is-
sues and enhancing computational efficiency. Their group also
used Riemannian straight-edge and compass constructions to
generate vectors on surfaces [21]. More recently, they [23] pro-
posed a Newton-based method for computing Riemannian cen-
troids on mesh surfaces, which was then used to construct ra-
tional Bézier and B - spline curves on surfaces. Overall, these
methods offer limited shape control capabilities and are gener-
ally ill-suited for interpolatory curve design.

Extrinsic projection methods tackle the curve design problem
in Euclidean space and subsequently project the results onto the
manifold, enhancing the flexibility and controllability of curve
design. Hofer et al. [8] proposed a discrete spline curve inter-
polation method based on energy minimization. This approach
discretizes curves into polygons, constructs spline energy, and
employs a projected gradient method to perform iterative op-
timization within the surface’s ambient space. Pottmann et al.
[29] expanded this concept by introducing discrete higher-order
spline energies to fit curves on surfaces. Panozzo et al. [27]
embedded the manifold surface into a high-dimensional Eu-
clidean space and computed the Riemannian centroid of the
corresponding manifold points using the Euclidean centroid
and the Phong projection. Although this method can generate
smooth curves without iteration, the high-dimensional embed-
ding process is computationally intensive, and projection op-
erations may introduce curve discontinuities. Jin et al. [11]
proposed a curve design method based on thin-shell space, en-
hancing robustness and efficiency, although the construction of
the shell space remains complex and time-consuming. More re-
cently, Xu et al. [34] developed a B-spline curve design method
using a simplified shell space, improving the quality of curves
at the cost of reduced efficiency. By relaxing manifold con-
straints, these methods increase degrees of freedom in curve
design for more flexible control. However, projection opera-
tions often compromise algorithmic robustness and efficiency,
potentially degrading the quality of the generated curves.

2.2. Implicit Modeling Methods

Implicit methods, also known as “level set methods” or “im-
plicit function methods”, constitute a modeling paradigm that
differs substantially from its explicit counterparts. Instead of
direct curve construction, these methodologies focus on gen-
erating specific scalar fields over discrete manifolds and then

extracting level sets of a predetermined value to derive the tar-
get curves. Level-set methods have achieved remarkable feats
across diverse disciplines, especially in image and geometry
processing. Their extensive applications span image segmen-
tation, surface modeling and reconstruction, mesh smoothing,
topology optimization, and path planning, as comprehensively
reviewed in [6]. Generally, implicit methods are predominantly
based on numerical techniques; however, with the rapid rise
of deep learning, learning-based approaches have emerged as
a burgeoning research frontier, demonstrating unique advan-
tages. However, their practical implementations remain largely
restricted to applications in images such as segmentation, as ex-
plored in [9, 32], and are often hampered by limited user con-
trol.

The implicit curve methods are evolving with notable ad-
vances. Wu et al. [1] pioneered an implicit curve evolu-
tion method grounded in the geodesic curvature flow equation.
To boost convergence, they adopted a semiimplicit integration
technique; however, the method’s overall computational effi-
ciency remained sub-par. Building on this foundation, Zhang et
al. [37] symmetrized the coefficient matrix of the equation and
reduced the computational dimension by establishing a narrow-
band domain, thereby significantly enhancing the efficiency of
the method and making it more amenable to mesh segmentation
tasks. Liu et al. [19] further innovated with an advanced dis-
crete approach for geodesic curvature flow, which made the co-
efficient matrix sparser and minimized the dimension of the so-
lution through a narrow-band construction, leading to a marked
improvement in efficiency. Most recently, Zhang et al. [38]
developed a variational implicit curve design method that by-
passes a direct solution of the curvature flow equation. By lever-
aging a variational framework, this method enables the seam-
less integration of diverse geometric constraints, yielding ro-
bust, high-quality curves. Nevertheless, its reliance on numeri-
cal techniques renders the approach sensitive to mesh quality.

Implicit methods inherently excel at satisfying manifold con-
straints, consistently producing high-quality self-intersection-
free curves. However, the majority of existing implicit ap-
proaches, which depend on diffusion flows and numerical op-
timization, are inevitably constrained by the limitations of nu-
merical computation. Consequently, their robustness is highly
contingent on the quality of the input mesh, posing a persistent
bottleneck for practical applications.

2.3. Physics-Informed Neural Networks

In recent years, propelled by the exponential growth of deep
learning, Physics-Informed Neural Networks (PINNs) have
emerged as an innovative paradigm for solving partial differ-
ential equations (PDEs), rapidly gaining ground in research
interest [14]. By seamlessly integrating the prowess of deep
learning with fundamental physical laws, PINNs have demon-
strated remarkable problem-solving capabilities. These net-
works construct residuals derived from the governing equations
and boundary conditions of PDEs, which are then incorporated
into the loss function. Through the iterative minimization of
this loss function, the neural network parameters are optimized,
effectively enabling the solution of complex PDE systems. This
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approach not only significantly reduces the reliance on large
volumes of labeled data but also enhances the model’s gener-
alization ability, thereby increasing its practical utility across
diverse applications. Moreover, PINNs leverage automatic dif-
ferentiation techniques, facilitating highly accurate derivative
computations that are essential for tackling intricate PDEs.

The applications of PINNs have proliferated in a wide range
of disciplines. In fields such as fluid mechanics and com-
putational mechanics, PINNs have proven highly effective in
solving various PDEs, including the Burgers equation and the
Navier-Stokes equations. They exhibit particular strengths in
tackling high-dimensional and nonlinear PDEs, where tradi-
tional numerical methods often encounter difficulties. More-
over, PINNs can be synergistically integrated with advanced
techniques such as proper orthogonal decomposition and dis-
crete empirical interpolation methods to further enhance the
accuracy and efficiency of the solution process. For instance,
Sahli Costabal et al. proposed ∆-PINNs, which leverage
Laplace-Beltrami eigenfunctions as a form of positional encod-
ing. This enables neural networks to better capture the topolog-
ical structure of complex domains, successfully solving Eikonal
and heat equations in challenging geometries such as coils,
heat sinks and the Stanford bunny[2]. Additionally, Gao et al.
introduced PhyGeoNet, a physics-informed geometry-adaptive
convolutional neural network that efficiently solves parametric
steady-state PDEs, such as the heat equation and steady-state
Navier-Stokes equations, in irregular domains[4].

Inspired by these successful applications and the core prin-
ciples of PINNs, we explore a PINN-based framework for im-
plicit curve design on surface meshes. The overarching goal is
to address the issue of numerical robustness found in existing
methods and to advance the state-of-the-art in this critical area
of geometric computation. Recent developments have demon-
strated the potential of PINNs for handling complex geometries.

3. Proposed Method

Given a discrete triangular meshM =< V, F > (where Vand
F denote the vertex set and the face set, respectively) and a
user-specified set of control points P = {pi} ∈ M, the goal is to
generate a visually smooth curve on the surface that interpolates
these control points. Since this work adopts an implicit model-
ing approach, the task is to solve a scalar field on the mesh and
extract its zero level set as the target curve C. Therefore, the re-
sulting implicit curve C must satisfy the following constraints:

1. Positional constraint: ∀pi ∈ P, ϕ(pi) = 0, where ϕ is the
predicted level set function and pi are the control points.

2. Geometric smoothness: The curve C = ϕ−1(0) should ex-
hibit a continuous normal variation.

To address this challenge, Zhang et al. [38] proposed an effi-
cient variational method. However, this approach exhibits high
sensitivity to mesh quality, as its solution hinges on the numeri-
cal stability of differential operators (e.g. the Laplace-Beltrami
operator). When the mesh contains low-quality elements (e.g.,
highly skewed triangles), the condition number of the system
matrix increases drastically, leading to failure in satisfying the

prescribed constraints. Unlike variational approaches, we inte-
grate implicit methods with deep learning and propose a curve
design network based on the PINN (Physics-Informed Neural
Network), named NICMM (Neural Implicit Curve Modeling
on Meshes). By encoding both positional constraints and ge-
ometric smoothness constraints into the loss function, NICMM
enables end-to-end optimization, thereby circumventing the er-
ror accumulation inherent in traditional multistage solvers and
significantly enhancing robustness against low-quality meshes.
The key components of the proposed approach are elaborated
in the following sections, including: (1) construction of input
features; (2) network architecture design; and (3) formulation
of loss functions.

3.1. Input Feature Construction
Classic Physics-Informed Neural Network (PINN) methods

traditionally rely on coordinate points as the sole input to the
network. To enhance feature extraction capabilities and accel-
erate network prediction, we expand the input feature set be-
yond coordinates, explicitly incorporating constraint encodings
and geometric mesh features.

The process begins with the construction of a sparse inter-
polation scalar field ϕp, which is based on the control point
sequence P = {pi}

k
j=1. Control points within the sequence P

that are not part of the original set of vertex V are treated as
virtual vertices and inserted into the mesh M, resulting in an
updated mesh structure. In detail, if pi is located inside a trian-
gle face, the triangle is virtually split, giving rise to three new
triangles. In contrast, when pi lies on an edge, we virtually split
the edge. Through this systematic procedure, the control points
are seamlessly integrated into the mesh as new vertices. A vi-
sual representation of control points pi, highlighted in red, at
various positions within the mesh is depicted in Fig. 1.

(a) Control point on vertex (b) Control point on edge (c) Control point on face

Fig. 1: Illustration of control points in different Positions

After performing the aforementioned operations, the origi-
nal mesh M = ⟨V, F⟩ is transformed into an updated mesh
M′ = ⟨V ′, F′⟩, where all control points are incorporated into
the vertex set V ′ ofM′, ensuring that the control points are pre-
cisely positioned as vertices of the mesh.

Subsequently, a discrete interpolation scalar field ϕp is con-
structed. Mathematically, this scalar field is defined as:

ϕp(v) =

1, if v ∈ P
0, otherwise

(1)

This scalar field acts as an explicit marker for user-defined con-
straint locations. By clearly denoting these positions, we estab-
lish well-defined boundary conditions that are essential for the
subsequent physics-guided optimization.
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To further enhance efficiency and accelerate convergence, an
initial Signed Distance Field (SDF) is precomputed and em-
ployed as the foundation for network initialization. The con-
struction of this initial SDF involves the following steps: First,
a closed-loop path (represented as a polygonal curve) that tra-
verses the control points is generated by leveraging the mesh
edges associated with P. This closed-loop path serves as a
constraint for constructing the initial SDF, where the points in-
side the loop are assigned negative values and the points outside
are assigned positive values. Algorithms such as Breadth-First
Search (BFS) or the Dijkstra shortest-path algorithm can effec-
tively generate the closed-loop path. The SDF itself can be effi-
ciently computed using the heat method [3], treating all vertices
on the closed loop as source points to generate the distance field
ϕ0.

Simultaneously, by integrating the vertex coordinates P and
vertex normals N of the input mesh, along with the previously
constructed scalar fields ϕp and ϕ0, the initial feature vector x =
[P,N, ϕp, ϕ0] is formed. This feature vector serves as the input
to the network, encapsulating geometric and constraint-related
information necessary for the subsequent processing.

3.2. Network Architecture Design

Building upon the Physics-Informed Neural Network (PINN)
framework, we introduce the Neural Implicit Curve Model-
ing on Meshes (NICMM) network. Unlike conventional PINN
architectures that typically rely on straightforward multilayer
perceptrons (MLPs), the NICMM network is specifically tai-
lored to address problems defined on surface meshes in three-
dimensional space. To effectively capture intricate geomet-
ric mappings and accelerate convergence, a hierarchical fea-
ture processing architecture is proposed, as illustrated in Fig. 2.
Specifically, the NICMM architecture enhances the basic MLP
structure with the following specialized modules:

• Efficient Channel Attention (ECA): This module height-
ens the network’s responsiveness to features in the vicinity
of control points by facilitating local cross-channel inter-
actions. Through this mechanism, the network can more
effectively prioritize relevant geometric features critical to
curve design.

• Light Gate Linear Unit (Light GLU): By integrating a
lightweight gating mechanism, this module significantly
improves the network’s feature selection capabilities while
mitigating the parameter explosion issue commonly asso-
ciated with traditional GLU structures. This design choice
ensures computational efficiency without compromising
the expressiveness of the network.

A comprehensive comparison of the contributions of each mod-
ule to the overall efficiency of the proposed network is presented
in Section 4.2.

3.3. Loss Function Design

The mathematical formulation of implicit curve constraints
involves the combined effects of scalar field gradients and
Laplace operators. Although traditional PINN methods (e.g.

automatic differentiation and tangent plane projection) could
be employed, discretization may introduce substantial errors
that degrade the accuracy of the solution. To address this, we
adopt the constraint construction approach proposed by Zhang
et al. [38], utilizing the finite element method for discretization.
Consequently, the loss function designed in this paper incorpo-
rates the following constraints: level-set constraint, interpola-
tion constraint, smoothness constraint, and feature constraint.

Ltotal = Lsdf + λintLint + λsmoothLsmooth + λfeaLfea (2)

Level Set Constraint: Drawing on the Eikonal equation, a
numerically stable smooth energy functional is employed as a
constraint:

Lsdf =

∫
M

(|∇ϕ|2 − 1)2dM (3)

This energy functional effectively constrains the geodesic dis-
tance field and ensures a reasonable distribution of the implicit
curve on the discrete manifold.

Interpolation Constraint: The constraint ensures that the pre-
dicted values at the interpolation points are zero, thus ensuring
that the control points are accurately fitted:

Lint =

|P|∑
i=1

ϕ(pi)2. (4)

Smoothness Constraint: The smoothness of the level set is
constrained using Willmore energy:

Lsmooth =

∫
Γ

κ2gdl =
∫

M
κ2g(ϕ)δ(ϕ)|∇ϕ|dM, (5)

where κ represents the geodesic curvature, and δϕ is the Dirac
function. Non-zero values of ϕ are weighted as zero to main-
tain continuity of the predicted field near the curve. To reduce
the complexity of the solution, the geodesic distance field con-
straint |∆ϕ| = 1 can be treated as a prior constraint. This simpli-
fies the above formula and approximates the geodesic curvature
κ using the Laplacian operator of the level set function ϕ leading
to the following simplified form:

Lsmooth =

∫
Γ

κ2gdl =
∫

M

1
2

(∆ϕ)2δ(ϕ)dM (6)

In some situations, to enhance control over curve behavior in
specified regions, we also propose a feature-aware mechanism
that integrates semantic or geometric features into the network,
such as feature alignment and obstacle avoidance. These appli-
cations can be treated as feature-based guidance, where align-
ment regions are regarded as areas of attraction, and obstacle
regions as areas of repulsion for the predicted curve.

To represent such feature-based guidance quantitatively, we
introduce a scalar field that encodes the relative importance of
different regions, i.e. the importance map. This field can be
constructed manually by assigning values to user-specified fea-
ture vertices, or automatically based on mesh geometry. For ex-
ample, a common strategy is to use geometric indicators such
as the maximal principal curvature of the mesh vertices, as sug-
gested in [34], to extract salient structural features such as sharp
edges or ridges.
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Fig. 2: NICMM architecture diagram

In our approach, given a user-defined set of feature vertices
P f ea (which consists of both alignment and obstacle vertices),
we construct a feature map ϕ f ea to quantify the feature intensity
across the mesh. This map is generated by utilizing a Gaussian
kernel to diffuse the influence of feature vertices to their adja-
cent vertices. Specifically, each feature vertex is endowed with
a positive scalar weight, which serves as the standard deviation
(σ) of its associated Gaussian kernel. The Gaussian value at an
arbitrary mesh vertex is computed based on its signed distance
function (SDF) from the feature vertex and the assigned σ. Fol-
lowing the calculation of these Gaussian responses, we assign
negative signs to the values originating from alignment vertices
and positive signs to those from obstacle vertices. The final
value of the map at each mesh vertex is obtained by aggregat-
ing all the signed Gaussian responses from the feature vertices.
Through this mechanism, the alignment vertices decrease the
scalar values in their vicinity, whereas the obstacle vertices in-
crease them, effectively encoding the distinct characteristics of
different types of feature. Consequently, the degree of diffu-
sion is adaptively regulated by the weights used as σ values in
the kernels. All non-feature regions are initialized with a neu-
tral baseline value. The resulting scalar field ϕ f ea is appended
as an additional channel to the input features, forming a final
feature vector: x = [P,N, ϕp, ϕ0, ϕ f ea], where ϕ f ea serves as a
unified region-aware descriptor, leading to a 9-dimensional in-
put per vertex. To incorporate this feature-aware guidance into
the training objective, we introduce a feature-aware loss term.

Lfea =

∫
M
ϕ2

f eaδ(ϕ)dM. (7)

The above loss of feature awareness encourages the zero level
set (i.e., the predicted curve) to align with regions with lower
ϕ f ea values while being pushed away from regions with higher
values.

Classic PINN methods are inherently mesh-free and require

the evaluation of loss at sampling points within the computa-
tional domain. To streamline computations and enhance the
tractability of the problem, we employ a strategy where all
mesh vertices are treated as sample points. Departing from
the conventional PINN framework, we introduce a discretiza-
tion scheme in which each loss function is computed over the
Voronoi domain associated with the sample points. This ap-
proach ensures a more robust and precise numerical integration,
effectively improving the accuracy and stability of the overall
optimization process. Building on this foundation, the level set
loss, smoothness loss and feature aware loss terms of the pro-
posed network are discretized as follows:

Esdf(ϕ) ≈
|V |∑
i=1

∑
t∈N(v)

wi,t
1
2 (|∇ϕ(ct)|2 − 1)2

Esmooth(ϕ) ≈
|V |∑
i=1

∑
t∈N(v)

wi,t
1
2 (∆ϕ(ct))2 ·Gσ(ϕ(ct))

Efea(ϕ) ≈
|V |∑
i=1

∑
t∈N(v)

wi,t
1
2 (ϕ f ea)2 ·Gσ(ϕ(ct))

(8)

whereN (v) represents the set of neighboring triangles of vertex
v, ct is the centroid of triangle t, wi,t is the area of the Voronoi
domain associated to vertex i in triangle t, typically set as |t|/3,
is the Gaussian weight based on the distance value ϕ(ct), used
to approximate the Dirac delta function.

4. Experimental Results

All experiments were carried out on the Ubuntu 22.04 operat-
ing system within a high performance computing environment.
The hardware configuration includes an Intel(R) CoreTM i9-
14900K CPU with a base frequency of 3.20 GHz, 64 GB of
system memory, and a NVIDIA GeForce GTX 4090 graphics
card with 24 GB of dedicated VRAM for accelerated graph-
ics processing. The CUDA parallel computing platform (ver-
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sion 12.6) was utilized to efficiently leverage GPU’s compu-
tational capabilities. For software implementation, the exper-
iments were developed using the PyTorch 2.3.1 deep learning
framework, which offered a flexible and efficient environment
for network development and training.

The experiments in this paper are conducted primarily
on mesh models from the SHREC16 dataset provided by
MeshCNN[7]. This dataset is chosen due to its comprehen-
sive nature and wide acceptance within the academic com-
munity, which offers a diverse range of mesh structures that
are representative of various real-world scenarios. It encom-
passes meshes with different geometries, topologies, and levels
of complexity, thereby providing a robust and challenging test-
ing ground for the proposed methods. However, some meshes
within the dataset exhibit a relatively sparse vertex distribution.
To address this issue and ensure more accurate and reliable ex-
perimental results, we apply subdivisions for these meshes.

4.1. NICMM training strategy

We employ NICMM to conduct curve design experiments
on various mesh models. To improve the efficiency of curve
generation, we partitioned the NICMM training procedure into
two stages.

The initial phase is the pretraining stage, during which a
batch of control points {(Pi}

N
i=1 is randomly sampled from the

mesh surface to conduct preliminary training. The optimization
objective for this stage is formulated as:

Θ∗ = arg min
Θ

N∑
i

Ltotal(ϕΘ(Pi)), (9)

where, ϕΘ(Pi) is the predicted result of the network at the con-
trol point Pi, with the aim of acquiring a set of network pa-
rameters Θ∗. This stage necessitates only a brief pre-training
duration, which notably curtails the time required for the sub-
sequent stage.

Specifically, for each network under evaluation, we randomly
sample 1000 sets of control points from its vertex set, each set
comprising approximately 3 to 5 vertices. These control points
are subsequently transformed into initial constraint features,
which, along with the mesh’s vertex coordinates and normal
vectors, serve as input features for training NICMM. The train-
ing process uses the AdamW optimizer with an initial learning
rate of 0.01.

The second stage is the prediction stage, where the learning
rate of the AdamW optimizer is adjusted to 0.001. The mesh
and user-specified constraint conditions are input into the net-
work pre-trained in the first stage for further optimization. Ex-
periments evaluations reveal that the NICMM model achieves
a remarkable acceleration in the prediction stage convergence
by undergoing merely around 10 epochs of pre-training, which
approximately takes 2 minutes. The rapid convergence enabled
by the pre-training phase allows the NICMM model to swiftly
adapt to the characteristics of the dataset, thereby facilitating
more accurate and timely predictions.

To assess the impact of varying pretraining durations on ac-
celerating the prediction process, we selected a mesh model

from the dataset and randomly sampled 1000 control point sets
for training across different durations, followed by 50 random
test sets. Using each pre-trained network, we performed the
prediction stage 30 times and recorded the average loss of the
test set, as presented in Table 1:

Table 1: Comparison of average loss for varying prediction durations

Pre-training Duration Average Loss

No Pre-training 57.6
2 min 19.9
10 min 14.4
30 min 13.0
10 h 12.5

Note: Bold indicates the best value.

In the prediction stage, the network is optimized by mini-
mizing curvature-related energy terms across the entire mesh.
These energy terms include a gradient norm-based smoothing
term and a Laplace operator-based bending term. However,
due to the nature of curve generation tasks, the predicted re-
sults only need to exhibit desired geometric properties within
the narrow-band region adjacent to the zero-level set. Continu-
ing to optimize these energy terms in regions far from the zero-
level set not only marginally improves the curve quality but also
wastes computational resources and may induce numerical os-
cillations.

To evaluate whether a pre-trained network obtained from a
single mesh can still perform well on other meshes, a two-stage
training strategy is designed. Stage 1 involves sampling 1000
sets of control points on a given mesh for pretraining, allowing
the network to learn generalizable geometric features. Stage 2
selects 20 meshes with diverse connective and geometry from
the dataset, with 10 control point sets sampled per mesh to form
a validation dataset of 200 test samples. All test samples are
initialized with the Stage 1 pre-trained network and undergo
50 iterations of constraint optimization to adapt to new mesh
geometries.

As shown in Table 2, the network with pretraining consis-
tently achieves lower loss values compared to the model trained
from scratch, reflecting faster convergence and better optimiza-
tion quality. This highlights the strong generalizability of the
proposed pretraining strategy across meshes with varying geo-
metric and topological characteristics.

Table 2: Comparison of network with and without pretraining

Pretraining Duration Average Loss

Without Pretraining 15.298
Pretrained for 30 min 10.996

To prevent the network from engaging in ineffective train-
ing during later stages, we devised an early stopping strategy
to assess whether the curve predicted by the current network
satisfies the generation requirements, thus terminating the pre-
diction process prematurely. Specifically, the following steps
are taken at the end of each epoch.
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1. Extract zero-level set curve: Extract the contour with a
level set value of 0 from the network-predicted level set
function, which serves as the current predicted curve.

2. Evaluate the metric of narrow-band energy: Compute the
average values of the smoothing and curvature energy
terms exclusively within a narrow band (with a width of
three times the mesh’s average edge length) surrounding
the curve.

3. Determine the convergence condition: If the narrow-band
energy exhibits minimal fluctuations over several consecu-
tive epochs or the energy drops below a predefined thresh-
old, the curve is deemed to satisfy the geometric con-
straints, prompting the termination of the training.

To validate the impact of the early stop strategy on training
efficiency and results, we iterated the training process for the
same data set multiple times and recorded the evolution of the
loss function, as illustrated in Fig. 3. The loss function notably
plateaus after 200 iterations.

Fig. 3: Change of loss with respect to the number of iterations.

To evaluate the impact of the early stop strategy on training
efficiency and curve quality, we designed the following com-
parative experiment. After the predicted curve first satisfies
the early stop criterion (that is, the differential energy within
the narrow band region falls below a predefined threshold), we
recorded the curve prediction results in three distinct settings, as
depicted in Fig. 4. The curves in the figure correspond to differ-
ent iteration counts, and visual inspection reveals that the pre-
dictions obtained after varying numbers of iterations are nearly
indistinguishable. Their geometric and topological properties
remain stable and exhibit only minor discrepancies in local de-
tails. However, training durations vary significantly, indicating
that excessive iterations yield little improvement in result while
consuming computational resources and potentially introducing
numerical instability.

4.2. Ablation Study

To validate the contribution of each module to the NICMM
network architecture for curve prediction tasks, we performed
an ablation study by separately removing the ECA module and
the LightGLU module. The performance of the full network
was compared with variants under identical conditions: 40 test
datasets, 30 minutes of pre-training time, and 50 rapid conver-
gence iterations. The results are tabulated in Table 3:

Fig. 4: The figure shows four performance curves with different prediction fre-
quencies: blue (41 iterations, meeting early-stopping criteria), orange (100 it-
erations), green (200 iterations), and purple (500 iterations)

Table 3: Convergence efficiency across model variants. Bold indicates optimal
values. ”w/o” = without.

Network Time (ms) Loss

NICMM 391 8.84
w/o ECA 290 13.34
w/o LightGLU 301 14.89
w/o Both 262 19.54

To further investigate the influence of diverse initial feature
inputs on curve prediction tasks, we performed an ablation
study on the input feature construction component. Specifically,
we systematically removed the vertex normal vectors, initial in-
terpolation scalar field, and initial level set features to quantify
the contribution of each feature to the network’s convergence
dynamics. All experiments used the early stopping strategy
and tracked the iterations required for different combinations
of features to satisfy the stopping criteria. The evaluations were
conducted under consistent conditions: 10 test samples and 2
minutes of pre-training. The results are presented in Table 4:

Table 4: Comparison of prediction with Different Initial Features. Bold indi-
cates the best performance. ”w/o” = without.

Initial Feature Combination Average Iterations

Full Features 32.0
w/o Vertex Normals 35.4
w/o Interpolation Scalar Field 75.4
w/o Initial Level Set 77.2

As shown in Table 4, the network achieves the early stop
criterion with minimal iterations with complete input features.
The removal of any feature subset consistently prolongs train-
ing iterations, with the most pronounced effect evident when
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the initial level set is excluded; this leads to an average increase
of approximately 45.2 steps. Although removing vertex nor-
mal vectors also introduces a convergence delay, its impact is
comparatively minor.

4.3. Parameters

In the loss function (Eq. (2)), the weights are employed
to balance the influence of different energy terms, and their
values can exert a certain impact on the results. In this ex-
periment, the default recommended values are set as follows:
λsd f = 1, λint = 5000 , λsmooth = 500 and λ f ea = 0 (No-
tably, since the interpolation constraint is regarded as a hard
constraint, it is assigned a large fixed weight. The weight of
feature constraint λ f ea is set to zero by default, as feature-aware
guidance is not considered here. Details on feature constraints
can be found in Section 4.7). Fig. 5 shows an ablation study
on the remaining two energy weights. In figures (a) and (b),
the white, blue, and green curves, respectively, represent the
predicted results as the weights of the level set term and the
smoothness term increase. It can be observed that the predicted
curves under different settings of λsd f and λsmooth, remain quite
similar, suggesting that the overall shape of the predicted curves
changes only slightly and maintains stability. The performance
of the network is generally consistent with that of traditional
variational methods. This shows that the network is robust to
weight settings within a reasonable range and can consistently
generate the target curve without significant performance fluc-
tuations due to hyperparameter tuning.

(a) λsd f = 0.1, 1, 10 (b) λsmooth = 50, 500, 5000

Fig. 5: Performance of NICMM under different initialization weights.

4.4. Sensitivity of different initial values

In the curve generation process governed by control point
constraints, the NICMM network leverages the initial scalar
field ϕ0—derived via the Heat Method from the closed-loop
curve formed by the control points as input. Consequently, the
methodology for constructing the initial closed loop may influ-
ence the final predicted curve.

To evaluate NICMM’s sensitivity to the initial scalar field,
we designed the following experiment: Despite maintaining

fixed control point constraints, we manually constructed mul-
tiple initial closed-loop curves with distinct geometries, result-
ing in diverse initial interpolation scalar fields ϕp and corre-
sponding initial level sets ϕ0. These initial fields were then fed
into the trained NICMM network, and variations in the final
predicted curves were systematically analyzed. Fig. 6 presents
a comparison of the predicted curves generated from different
initial closed loops with identical control points. The experi-

Fig. 6: The white curves in the figure represent manually constructed initial
closed loops, while the blue curves denote the predicted results by the network.
The leftmost image shows a case without an initial loop, using only interpola-
tion points to generate the signed distance field.

mental results show that, as the geometry of the initial closed
loop varies, the curves generated by NICMM also differ. How-
ever, these differences appear mainly in local geometric details,
whereas the overall shape and topological structure remain sta-
ble. This indicates that although the method exhibits some sen-
sitivity to the initial closed loop, it does not rely on strictly con-
structing “optimal initial values” in practical applications and
demonstrates strong convergence robustness.

4.5. Comparisons
Given that NICMM’s physical constraints are consistent with

those of traditional optimization-based methods [38], both of
which rely on discrete differential operators for computation.
Thus, a comparative analysis was conducted between the two
approaches. A mesh model with about 4000 vertices and 8000
faces was selected and a common set of control points was used
to generate curves via the traditional implicit method and the
NICMM network. The results are shown in Fig. 7, where the
white curve represents the results of the traditional method and
the blue curve denotes the prediction results of NICMM. Visual
inspection indicates that the two methods produce generally
similar results, although there are subtle discrepancies. These
differences are likely attributed to variations in initial closed
loops, which cause the solutions to converge to different local
minima, thereby resulting in slightly divergent curves.

To quantitatively evaluate the quality of the curves produced
by the two methods, i.e. smoothness, we adopt geodesic cur-
vature as the assessment metric. Specifically, the zero level
set is extracted from the implicit scalar field generated by both
NICMM and the variational method [38] and subsequently dis-
cretized into polyline representations. Using these representa-
tions, the geodesic curvature κg is calculated at each vertex.

κg =
2sinθi
|r̂i+1 − r̂i−1|

, (10)

where ri−1, ri, ri−1 represent three adjacent vertices on the curve,
and their projections onto the tangent plane at the point ri are
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Fig. 7: Comparison of variational methods.

denoted as r̂i−1, r̂i, r̂i−1, θi is the angle between r̂i − r̂i−1 and
r̂i+1 − r̂i. Fig. 8 shows the geodesic curvature distribution of the
curves generated by the two methods. Geodesic curvature val-
ues are visualized as a weighted histogram, where the weight of
each bin is determined by the length of the corresponding curve
segment. The experimental findings demonstrate that the curves
generated by the proposed method (blue) and the variational
approach (green) exhibit comparable distributions of geodesic
curvature, suggesting a high degree of similarity in their geo-
metric characteristics.

Fig. 8: Comparison of geodesic curvature across different methods.

To assess the efficiency of our method relative to the tradi-
tional variational approach, we designed the following experi-
ment: 40 sets of control point data were randomly selected from
the dataset, and curve generation was performed for each set us-
ing both the NICMM and the variational method. To mitigate
random error, each experiment was repeated three times, with
the average runtime recorded as the final result. Both methods
were executed on the same hardware platform under identical
convergence criteria (that is, the loss variation over the last 10
iterations was less than 10−5). The average runtime and stan-
dard deviation are reported in Table 5.

Table 5: Comparison of runtime (averaged over three runs) between NICMM
(ML) and the variational method (VM) on the test data.

Method Avg (ms) Std (ms) Min (ms) Max (ms)

ML 398 62 262 697
VM 102 106 24 538

Note that although NICMM can utilize GPU acceleration to
facilitate efficient computation, the requirement of performing

backpropagation through the entire network at each iteration
leads to lower computational efficiency compared to the tradi-
tional variational method, which operates on the CPU.

To further validate the advantages of the proposed NICMM
framework in curve modeling, we perform a comparative anal-
ysis against B-surf [20], a state-of-the-art explicit method de-
signed to generate spline curves on meshes. The results, vi-
sualized in Fig. 9, show fundamental differences between the
two approaches. B-surf employs a piecewise Bézier segment
construction strategy, which needs manual specification of con-
trol points and knot vectors for each individual segment. This
process requires user intervention to ensure continuity across
segment boundaries, often resulting in a labor intensive work-
flow. In contrast, NICMM utilizes implicit representations to
automatically generate smooth curves that satisfy interpolation
constraints using only user-specified control points. By inte-
grating geometric fairness principles directly into the neural
network architecture, such as incorporating curvature regular-
ization terms in the loss function, NICMM inherently produces
high-quality fair curves with globally consistent smoothness.
This eliminates the need for manual segmenting and reduces
reliance on experience. Notably, while B-surf may generate
curves with localized high-curvature regions, NICMM ensures
a more uniform curvature distribution. These results highlight
NICMM’s capability to streamline the curve design process
through automation while enhancing curve quality.

Fig. 9: Comparison with explicit methods. Left: Smooth implicit curve gener-
ated by NICMM from user-specified control points, exhibiting geometric fair-
ness with uniform curvature distribution. Right: Explicit spline curve produced
by B-surf under identical input points, with overlaid Bézier control points (blue)
and knot vectors (red) highlighting manual segment and continuity adjustments.

4.6. Robustness analysis
To evaluate the robustness of the network under varying mesh

quality conditions, this study synthesizes a set of low-quality
meshes based on the subdivided SHREC16 dataset using a geo-
metric perturbation method that introduces near-degenerate el-
ements. This method preserves the mesh topology while de-
liberately disturbing the positions of certain vertices, thereby
generating elongated triangular faces and significantly degrad-
ing overall mesh quality.

Specifically, to introduce geometric perturbations, we ran-
domly select one triangle from the set of mesh faces F for every
n triangle. For each selected triangle, we randomly choose one
vertex and displace it along the perpendicular direction of the
plane defined by the opposite edge. The magnitude of displace-
ment is determined as a random fraction of the length of the
opposite edge, constrained within the interval [smin, smax]. This
approach ensures a controlled and consistent level of geometric
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distortion across the mesh. To safeguard against excessive ver-
tex movement and self - intersections, a KD - Tree - based col-
lision detection mechanism is employed prior to each perturba-
tion operation. This collision detection step filters out any ver-
tex displacements that would cause the vertex to come within
an unacceptable proximity of neighboring vertices. Following
the perturbation, the modified vertex is projected back onto the
surface of its associated triangle. Subsequently, the internal an-
gles of the triangle are computed, and if any of these angles
fall below a pre - defined threshold (such as 1◦ ), the perturba-
tion is discarded, ensuring that the mesh quality remains within
an acceptable range. The resulting meshes visually retain the
overall geometry shape, but their local quality is significantly
degraded. These meshes serve as effective test cases for evalu-
ating the network’s performance under irregular boundaries and
extreme aspect ratios. Fig. 10 shows an example of a perturbed
low quality mesh. When designing smooth curves on surface

Fig. 10: Schematic diagram of low-quality mesh.The red bounding boxes high-
light regions containing nearly degenerate patches.

meshes using traditional numerical optimization methods (e.g.,
gradient descent or Newton’s method), the robustness of these
approaches is highly dependent on the quality of the mesh. In
the presence of elongated or near-degenerate triangles, the con-
dition number of the resulting nonlinear system can degrade
drastically, leading to slow convergence, oscillatory behavior,
or even complete failure. Although our approach employs a dis-
cretization scheme similar to traditional differential operators,
it uses physics-informed machine learning to mitigate such nu-
merical instabilities. By implementing single-sample repeated
training during the rapid convergence phase, the proposed net-
work implicitly learns the local geometric features of the un-
derlying mesh. This mechanism alleviates the adverse effects
of local numerical instability, enabling the network to maintain
robust stability even when processing low-quality meshes with
extreme element aspect ratios or topological imperfections.

The experimental results in Fig. 11 demonstrate the excep-
tional robustness of the proposed method compared to tradi-
tional optimization techniques when confronted with nearly
degraded mesh conditions. NICMM exhibits remarkable re-
silience, consistently generating high - fidelity curves that ad-
here to interpolation and smoothness requirements, even in the
presence of suboptimal mesh quality. In contrast, the varia-
tional approach succumbs to numerical instabilities in regions

with mesh irregularities. These instabilities manifest as numer-
ical divergence, leading to the emergence of severe visual arti-
facts and, in some cases, the complete failure to meet the im-
posed geometric constraints. This stark contrast underscores
the significant advantage of NICMM in handling challenging
mesh scenarios, solidifying its superiority in practical applica-
tions where mesh quality may vary widely.

Fig. 11: Comparison results on low-quality meshes.NICMM (blue) vs. tradi-
tional variational method [38] (white).

To assess the stability of NICMM on the surface with differ-
ent discretizations, we designed two experiments. Firstly, we
conducted geometric perturbations for a high-quality mesh and
generated multiple mesh variants with nearly degenerate ele-
ments. With a fixed set of control points, our approach produces
corresponding curves as shown in the upper row of Fig. 12,
where all curves successfully interpolate control points while
maintaining nearly identical shapes, even when mesh quality
is severely degraded. This outcome underscores the robust re-
silience of the approach to geometric noise and topological im-
perfections in the input mesh.

Secondly, we selected an additional mesh from the
SHREC16 dataset and applied successive levels of Loop sub-
division to generate meshes with varying resolutions (coarse,
medium, and fine). Using the same set of control points for
meshes with various resolutions, we evaluated the consistency
of predicted curves. As shown in the bottom row of Fig. 12,
NICMM delivers stable predictions and faithfully adheres to
control point constraints across all mesh resolutions. Notably,
the method exhibits remarkable insensitivity to mesh vertex
density, maintaining consistent geometric fidelity, whether ap-
plied to low-resolution meshes (≈1k vertices) or high-fidelity
fine meshes (≈64k vertices). This demonstrates NICMM’s ro-
bust generalization capability across diverse geometric repre-
sentations, ensuring reliable performance in both sparse and
dense mesh environments.

4.7. Feature-aware curve design

In the experiment depicted in Fig. 13, we designated a set
of alignment vertices to validate the ability to align features.
The right image shows that the predicted curve tightly con-
forms to the specified region, providing empirical evidence of
the feature-aware design’s effectiveness in guiding curve gener-
ation according to user-specified constraints.

Fig. 14 presents the result of integrating obstacle constraints.
By assigning larger values to obstacle regions in the feature
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Fig. 12: Illustration of the robustness of NICMM under varying mesh qualities and resolutions. The top row shows mesh surfaces with different levels of geometric
perturbations applied to a high-quality base mesh. The bottom row presents the corresponding curves predicted by NICMM on meshes with varying degrees of
subdivision, using the same set of control points.

Fig. 13: From left to right: input with alignment region (blue), result without
guidance, and result with feature alignment.

field, the curve successfully avoids undesired areas, demon-
strating the unified treatment of different types of guidance.

Fig. 14: In the figure, the white and blue curves represent the network’s predic-
tions for the same control points without and with obstacle constraints.

To evaluate the generalizability of NICMM across diverse
geometric representations and topological configurations, we
conducted comprehensive experiments on multiple benchmark
mesh datasets. Specifically, we selected a representative sub-
set from the Thingi10K repository, which encompasses a broad
spectrum of real-world objects with varying complexity, includ-
ing organic shapes, mechanical parts, and architectural models.

As shown in the visual gallery presented in Fig. 15, the net-
work demonstrated remarkable stability and consistency in gen-
erating high-quality curves across this heterogeneous dataset.
The results indicate that NICMM can effectively handle meshes
with intricate geometries, non-uniform sampling densities, and
topological variations.

5. Conclusion

We propose NICMM, a novel curve modeling network
grounded in physics-informed neural networks (PINNs), by
integrating deep learning techniques with traditional implicit
curve design methodologies. This innovative network takes tri-
angular meshes and control points as inputs and computes a
level set function that adheres to multiple geometric constraints.
Consequently, it enables the generation of curves that reside
precisely on surface meshes. To optimize the performance of
the network, we devise a two-stage training strategy. In the ini-
tial stage, a concise pretraining process is carried out using con-
trol points sampled from mesh vertices. Subsequently, in the
second stage, the network achieves fast convergence for user-
defined control points through optimization.

The experimental findings unequivocally demonstrate that
the NICMM outshines in both robustness and generalization
capabilities. Significantly, it maintains consistent performance
across meshes with disparate discretization schemes, highlight-
ing its adaptability to various geometric representations. No-
tably, even when applied to low-quality meshes marred by elon-
gated faces or acutely small angles, NICMM adeptly gener-
ates smooth and geometrically valid curves, thereby underscor-
ing its exceptional resilience against mesh degradation. More-
over, the model exhibits remarkable insensitivity to the initial
level set construction. Irrespective of the initialization method
employed, the network reliably converges to analogous pre-
dictions, effectively eliminating the need for extensive man-
ual fine-tuning. This characteristic not only streamlines the
computational process but also enhances the practical utility
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Fig. 15: The gallery of curve design results by NICMM on various meshes. The red regions marked on the models indicate obstacle areas, and the blue regions
indicate feature alignment areas. The white curves are generated without feature constraints.

of NICMM, making it a highly versatile and user-friendly ap-
proach for curve generation tasks.

Despite these advances, the proposed approach has some lim-
itations, and several critical challenges remain ripe for further
investigation. Firstly, although the current network demon-
strates promising capabilities, its prediction efficiency has yet
to achieve a significant edge over traditional numerical ap-
proaches. To address this, future research endeavors will fo-
cus on exploring more efficient and streamlined network ar-
chitectures, aiming to facilitate swift and direct curve predic-
tion, thereby bridging the performance gap. Secondly, the net-
work’s inability to exert explicit control over the topologies of
generated curves poses a notable drawback. As depicted in
Fig. 16, this limitation may result in the emergence of unantici-
pated structures, such as multiple loops, which can deviate from
the intended design outcomes. To overcome this hurdle, sub-
sequent studies will seek to incorporate topological constraint
mechanisms. By doing so, the approach will not only enhance
the controllability and reliability of curve generation, but also
ensure that the produced curves align more closely with user
expectations, leading to more predictable and user-oriented de-
signs.
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