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Image-based 3D model retrieval aims to search for 3D models according to 2D image queries, which
provides a convenient way for the management of large 3D model datasets. Most of the related works
put the emphasis on bridging the modality gap between 2D images and 3D models, which faces a lot
of challenges due to the huge domain discrepancy. In this paper, we explicitly model and eliminate
the domain-specific features of 2D images and 3D models. To alleviate the negative effect of complex
background of natural images, we adopt semantic focus loss to constrain networks to learn the most
semantically relevant feature representations for both 2D images and 3D models. We conduct extensive
experiments on two cross-domain 3D model retrieval datasets, MI3DOR and MI3DOR-2, to show the
effectiveness of the proposed method.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, with the increasing maturity of 3D model-
ing technology, 3D models have been widely used in industrial
production, e-commerce, biomedicine, and other relevant fields
[1-4]. How to effectively organize and utilize the enormous
amount of 3D model data becomes an important and challenging
problem. 3D model retrieval is an important tool to leverage
such massive data. Take the field of biomedicine for example, 3D
model retrieval can be used to search for and retrieve 3D models
of molecules that can be used in drug discovery. A pharmaceutical
researcher could use 3D model retrieval to search for and retrieve
3D models of proteins that are involved in a particular disease to
aid in the development of new drugs. According to different query
conditions, 3D model retrieval can be categorized into model-
based and image-based methods. Compared with 3D models, 2D
images are easier to acquire, such as natural images and hand-
drawn sketches. In this paper, we focus on the task of retrieving
3D models queried from natural images, which has practical
real-world applications.

Traditional 3D model retrieval methods [5,6] mainly rely on
manually designed descriptors to represent the model, among
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which statistical information based methods describe features
through statistical information such as angles, normal vectors,
and curvature between random points on the model surface. For
example, Hamza et al. [5] used a probabilistic shape descriptor to
represent an object, which measures the global geodesic distance
between two arbitrary points on the object surface. Image-based
3D model retrieval methods aim to query 3D models based on
2D images, and a common way is to convert complex 3D models
into a sense of 2D model views. Some traditional methods [7,8]
use polar coordinates to represent 2D images and use the bag-of-
words method to fuse multi-view features. In recent years, the
great success of deep learning in the feature extraction of 2D
images has promoted the development of feature extraction for
image-based 3D model retrieval. The image-based deep learning
method is more mature, and it is the mainstream multi-view
feature learning method for 3D model retrieval.

Among deep learning-based methods for 3D model retrieval
from 2D images, some previous works [9-13] used supervised
learning to solve the problem of matching 3D models according
to 2D images. Li et al. [9] fused the image and model into a
joint embedding space and calculated their similarity by the
distance between the points in the space. Lin et al. [ 10] performed
instance-level and category-level contrastive learning on the im-
ages and the models to solve the problem of single image 3D
shape retrieval, and achieved a good performance. However, the
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Fig. 1. Overview. The proposed framework mainly consists of three parts. The visual feature extraction module is responsible for extracting image features and
multi-view features of the model. In the cross-domain feature adaptation part, we use the DSMN to model domain-specific attributes to obtain domain-invariant
representation. And the semantic focus loss is designed, which constructs image-image pairs and image-model pairs to alleviate the interference of negative semantics
in natural images in an adversarial manner. The cross-domain adaptation process is constrained by Le, Log, and Ly, where the feature visualization of loss is shown
as four rectangles. The retrieval module uses adaptive features to measure similarity and sort 3D models.

performance highly depends on a large amount of manually la-
beled data, which needs a time-consuming and expensive process
for the explosively emerging 3D models. Therefore, one goal for
the task of image-based 3D model retrieval is utilizing existing
2D image datasets with rich labels to boost the feature learning
of unlabeled 3D models.

Unsupervised 3D model retrieval methods can be roughly
divided into two types: metric learning methods and domain
adversarial learning methods. Metric learning methods [14-19]
minimize the statistical metric of two domains to align the fea-
ture distributions. Adversarial learning-based methods [20-23]
simultaneously train a feature extractor and a domain discrimina-
tor to force the feature distributions closer, or adds class-level or
instance-level constraints on this basis. Despite that great efforts
have been made to enable accurate and convenient 3D model
retrieval using 2D images, the following issues have not yet been
fully resolved:

o Difficulty in eliminating the interference of domain-specific
attribute that is harmful to the alignment of two domain
features. Due to the obvious discrepancy between 2D im-
ages and 3D models, as well as the lack of labels for 3D
models, the alignment between the 2D and 3D features is a
nontrivial problem. Most of the previous methods [14,23,24]
directly operate on the features of 2D images and 3D models
to narrow the distance between the two domains. Neverthe-
less, this may ignore the effect of domain-specific properties
that are harmful to cross-domain alignment. Therefore, it
becomes necessary to find a suitable representation for both
2D images and 3D models, so that we can obtain domain-
invariant features for a better feature alignment and 3D
model retrieval.
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e Difficulty in alleviating the interference caused by the pos-
sible complex background in 2D images. One of the main
differences between 2D images and 3D models is that 2D
images could contain complex background while a 3D data
item only contains the target object. Most of the existing
mainstream methods [14,15,25] focus on the features of the
entire image, and less consideration is given to the pro-
cessing of complex backgrounds, causing that the irrelevant
semantic information in the backgrounds are also encoded.
It will distract the network from learning 2D image features
corresponding to 3D models. Therefore, we consider that the
network should focus on only the target object in a 2D image
for the retrieval task.

To overcome the above problems, we model the domain-
specific features of natural images and projections of 3D models
and remove them to narrow the gap between the two domains.
Furthermore, the semantic focus loss is used to alleviate the influ-
ence of the background in natural images by constructing sample
pairs, so that the network model can pay more attention to the
target object. Specifically, the framework consists of three parts
as shown in Fig. 1: visual feature extraction, cross-domain feature
adaptation, and retrieval. Firstly, we represent 3D models by
rendering from multiple viewpoints, and use convolutional neural
networks to extract visual features for both natural images and
3D models. Later in the adaptation module, we explicitly model
domain-specific features and eliminate these features to acquire
domain-invariant features. The classification loss L. supervises
the network to learn semantic information with 2D image labels.
The semantic focus loss Ly constrains the network to focus on the
semantic information of the target object via adversarial learning.
The domain adversarial loss L,g, aims to align the overall feature
distribution of the images and the models. In the retrieval phase,
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given the features of image queries, we obtain a rank list of 3D
models in the dataset. In summary, the main contributions of this
paper are:

e We model and eliminate the domain-specific features in
both 2D natural images and 3D model projections, which
can effectively narrow the discrepancy between 2D and 3D
domains to improve the performance of image-based 3D
model retrieval.

e We adopt a semantic focus loss to alleviate the interference
of irrelevant semantic information in 2D images on the
retrieval task, which can make the network concentrate on
the target object to obtain a better retrieval performance.

e The experimental results on two public cross-domain 3D
model datasets, i.e., MI3DOR and MI3DOR-2, show the ef-
fectiveness of the proposed method.

2. Related work
2.1. 3D model retrieval

3D model retrieval is a process of searching similar models in
a large gallery according to the query and arranging the mod-
els in accordance with the similarity measurement. According
to different types of queries, we can divide 3D model retrieval
methods into two categories, one is image-based methods and
the other is model-based methods. For model-based 3D model
retrieval methods [26-28], both the query and the search target
are 3D models, and various similarity measurements are ex-
plored. The representation forms are usually point cloud [26,29],
mesh [30], voxel [31] etc. Wu et al. [32] proposed to use Con-
volutional Deep Belief Network (CDBN) to represent 3D models,
which transfer the model into a distribution of binary variables
on the 3D grid that can be activated by view planning for object
recognition. Li et al. [33] propose the network structure of the
Self-Organizing Network for feature extraction of a disordered
point cloud, and the self-organization map is constructed to sim-
ulate the point cloud spatial distribution. Based on self-organizing
map, layered feature extraction is carried out for single point
and self-organizing map node, and a feature vector is used to
represent the input point cloud.

For image-based 3D model retrieval methods, the query is a
2D image and the search target is the 3D model [34-36], which
facilitates practical scenarios. Because of the differences in data
distribution between 2D images and 3D models, most image-
based 3D model retrieval methods use multiple view images to
represent 3D models. Among the traditional methods, Khotanzad
et al. [7] used polar coordinates to represent the 2D image,
which mapped all the pixels in the image to the unit circle,
and converted the Cartesian coordinates to polar coordinates,
which have the property of rotation invariance. Ohbuchi et al. [8]
first proposed to apply the Bag-of-Words model to 3D model
retrieval. It characterizes single-view features through a scale-
invariant feature transformation descriptor [37], and then uses
a bag-of-words model to fuse features from multiple views. In
the deep learning method in recent years, Su et al. [38] designed
a Multi-View Convolutional Neural Network, which extracts fea-
tures of the rendered images from different perspectives of the
3D model via convolution network and fuse view features to a
compact descriptor. Massa et al. [39] proposed an end-to-end
2D-3D paradigm detection method. It adopts a cross-domain
adaptive method to adjust the characteristics of the 2D image to
better align with the rendered view of the CAD model. Its adap-
tive method is integrated into a convolutional neural network-
based pipeline to improve the accuracy of 2D-3D detection. Zhou
et al. [23] design an unsupervised two-layer embedded alignment
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network to reduce the statistical difference between the images
and the models for domain alignment, and narrow the distance
between the class centers of the 2D image and 3D model domains
for class-level alignment. Nie et al. [40] proposed the multi-
channel-attention (MCA) convolutional neural network method
to represent 3D models. The MCA method can effectively fuse
multiple 2D panoramas of 3D models by finding ways of different
weights of each panorama view.

2.2. Domain adaptation

In transfer learning, domain adaptation techniques are pop-
ular to deal with the situation that the data distributions in
the source and target domains are different. Domain adaptation
can be roughly divided into metric learning methods [41] and
adversarial based methods [22,42]. Sun et al. [43] achieve the
adaptation goal by balancing the classification loss and narrow-
ing the second-order statistics of the two domains. Most metric
learning methods adopt Maximum Mean Discrepancy [44] to
assess the differences between the weighted sum of all order
statistical moments of the two domains. Chen et al. [41] de-
signed the Higher-order Moment Matching (HoMM) framework
to minimize domain differences, and HoMM is further extended
to reproducing kernel Hilbert Spaces for alignment.

The adversarial learning method is to judge whether the fea-
ture is from the source domain or the target domain by train-
ing the domain discriminator, while the feature extractor learns
a domain-invariant representation to confuse the domain dis-
criminator. Ganin et al. [24] first propose adversarial domain
adaptation network. On this basis, Long et al. [45] propose Con-
ditional Domain Adversarial Networks (CDANs) that employ the
new conditioning methods: multilinear conditioning and entropy
conditioning. The former improves the recognition rate of the
classifier by capturing the cross-variance between the feature
representation and the classifier prediction, and the latter guaran-
tees the portability of the classifier by controlling the uncertainty
of the classifier prediction. Liu et al. [46] designed the Transfer-
able Adversarial Training framework to achieve the adaptation of
deep classifiers. By tricking the class classifier and domain dis-
criminator, the method generates transferable examples to bridge
the gap across domains. Jiang et al. [22] presented simulated
recognition as an adversarial reinforcement learning problem,
using the learned GAN loss instead of the standard mean squared
error to measure the difference between the distributions of
transition tuples, which addresses transferring the policy to a new
domain with different dynamics.

3. Method
3.1. Overview

In this paper, we aim to match relevant unlabeled 3D models
based on a given 2D image as a query. We represent the 2D
image domain as I (x{y{)lN:’1 where x! denotes an image,
yf € {1,2,...,C} is the corresponding label, C is the number
of categories, and N; is the number of images. The unlabeled 3D

model domain is defined as M = (X}V’);V:""]with Ny samples. 2D

images and 3D models share the same label space, but domain
discrepancies exist between their feature distributions.

The framework is shown in Fig. 1 which contains three key
procedures. The module of visual feature extraction is responsible
for taking 2D images and multiple model views into the backbone
network to extract features. The cross-domain feature adaptation
module is in charge of aligning the cross-domain feature distri-
butions and concentrating on the main semantics. Specifically,
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the features extracted from the 2D images and 3D model views
through CNN are input into the Domain-specific Modeling Net-
work (DSMN) to obtain domain-invariant features. For the 3D
model data, after passing through the DSMN, the max-pooling is
used to fuse the multiple features into a compact feature descrip-
tor. Then both the image and model features are passed through
the classifier. The cross-domain adaptation process is constrained
by the classification loss L., the domain adversarial loss Lyg,, and
the semantic focus loss Ly. As shown in the visualization of the
features in the four rectangles in Fig. 1, L., uses label information
to train network to aggregate the same category features in the
image domain, Ly, aligns the overall feature distributions of
images and models, Ly narrows the distance of the same category
in two domains by constructing the image-image pair and the
image-model pair. The network is trained under the constraints
of the three losses to reduce the distance between features of
the same category and expand the decision boundary of different
categories. Finally, the retrieval module is responsible for sorting
the adapted features. Specifically, the trained network is used to
extract features from 2D images and 3D models, and then the
euclidean distance between the query image feature representa-
tion and each 3D model feature representation in the 3D model
database is calculated. Finally, the 3D models are sorted based on
the similarity value.

3.2. Visual feature extraction

We use ResNet-50 [47] as the backbone CNN to extract fea-
tures from 2D images and 3D model multi-views. As MVCNN [38],
we represent a 3D model with a set of rendered images captured
from different viewpoints around the object by the Phong reflec-
tion model [48], one set of rendered images includes 12 views.
Specifically, 12 virtual cameras are set around the 3D model, all
of which are at an angle of 30 degrees to the horizontal plane,
and the interval between two viewing angles is 30 degrees so
that 12 views of the 3D model from different viewing angles can
be obtained. The model views are fed into CNNs, which share
weights with the CNNs that extracts image features.

3.3. Cross-domain feature adaptation

In our cross-domain feature adaptation, we aim to overcome
two main problems that exist in the task of image-based 3D
model retrieval. On the one hand, domain-specific attributes in
2D images and 3D models negatively impact cross-domain re-
trieval performance, so we explicitly model the specific features
of 2D images and 3D models. On the other hand, 2D images
may contain complex background, but 3D model projections only
include the target object. Thus, we utilize semantic focus loss
to alleviate irrelevant information induced by the background
of 2D images. The domain-specific modeling network will be
introduced in Section 3.3.1, and the semantic focus loss will be
explained in Section 3.3.2.

3.3.1. Domain-specific modeling network

The Domain-specific modeling network consists of a funda-
mental network (denoted as F) and a domain-specific network
(denoted as DS) [49]. The F network extracts all the features of an
image, which consists of two parts: domain-specific features and
domain-invariant features. Consequently, the domain-invariant
representation can be obtained by subtracting the domain-
specific network’s output from the fundamental network’s out-
put.

Formally, we extract the feature of image x; through CNN and
denote it as G (x;) and feed G (x;) into the fundamental network
and domain-specific network respectively, which are denoted
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as F(G(x;)) and DS (G (x;)). We use DI to represent domain-
invariant network. Thus the relationship can be expressed as:

DI (G (xi)) = F (G (x))) — DS (G (xi)) (1)

DS (G (x;)) tends to be dominant by the representation of domain-
specific attributes, so the domain-invariant representation can be
obtained by subtracting DS (G (x;)).

Specifically, to capture more domain-specific properties to en-
hance the ability of DS, we adopt the method of integrating mul-
tiple sub-networks, and the initialization of these sub-networks
is different, which is to enable each sub-network to model local
domain-specific properties, resulting in a stronger fit for the
entire domain-specific network. We explore the role of different
initializations by analyzing the similar relationship between DI(.)
and different DS(.), which is also verified by experiments in
Section 4.4.4. On the other hand, too many sub-networks can
lead to a greater risk of overfitting. The number of sub-networks
is shown in Table 4. Let X = G (x;), then we have DS(X) =
DS1(X) 4+ DS,(X) + DS3(X).

3.3.2. Semantic focus loss

The network is trained to capture semantic information with
the help of labeled images. As Eq. (2) shows, L. represents the
classification loss on labeled images, where J denotes the category
cross-entropy loss function.

Lee = Exy)~, [J (DI(G(x)), y)] (2)

As natural images have complex background while model
views only contain the target object, we use semantic focus loss
to constrain the network concentrate on the dominant semantic
representation. Suppose the semantic prediction (i.e., the output
of classifier) for image ¥x; is p{ € R? where d is the number of
category, and the semantic prediction for model x; is p]’."’ . The
largest probability within p{ indicates the dominant semantic
representation, which is probably caused by the main object
in the image. For the rest probabilities, different images have
different distributions, which are mainly because of various back-
grounds. The goal of semantic focus loss is adopting a two-player
adversarial strategy [50] to make the feature extraction suppress
irrelevant semantic information.

Firstly, two types of pairs are constructed, which are image-
image pair and image-model pair with the same dominant pre-
diction. Then the semantic focus loss is defined as:

. T
Ly = min max — N, ,Z,JS (pi. p})
Yi=Yk
TZ
- Niz Z JS (pg,P}w)

yi=p

(3)

The ]S divergence aims to measure the discrepancy between
the predictions of a pair, G refers to feature extractor and C
denotes classifier, and T is the temperature scaling parameter.
N; and N, represent the number of samples that satisfy the
conditions of y; = yj and y; = j}, respectively. For 2D images,
we have the ground truth label for each sample. For 3D models,
we adopt the pseudo-label which is 5,11_\/1 = argmax, (qJM(C)) where

(q]M(C)) is the cth element of the softmax output.

As the above two-player formulation shows, the training of
the classifier tries to increase the discrepancy between samples
with the same dominant prediction. However, for the pair of sam-
ples, the prediction probability towards the dominant category

performs similarly (i.e., both samples have the largest probability



D. Song, X.-J. Jiang, Y. Zhang et al.

airplane
irp L

bed camera

3D Models

camera

2D Images
(a) MI3DOR

Computers & Graphics 115 (2023) 25-34

sofa chair sofa
E -
guitar bed guitar
R - /d N /,
e
cup plant cup plant
2D Images 3D Models

(b) MI3DOR-2

Fig. 2. Samples of MI3DOR and MI3DOR-2.

at the same category). Due to different backgrounds, the prob-
abilities at the rest categories have various distributions for the
paired samples. Consequently, maximizing the discrepancy will
make the classifier increase the weight of irrelevant category
predictions.

In contrast, the training of the feature extractor will suppress
the features of these irrelevant semantics in order to reduce the
discrepancy of prediction distribution, which makes the feature
extractor focus on the dominant semantic information and alle-
viates the negative effects caused by complex image backgrounds.
In the process of realizing adversarial loss, gradient reverse layer
(GRL) [24] is adopted to realize parameter optimization through
gradient descent.

3.3.3. Overall adaptation loss

The commonly used domain adversarial loss (Eq. (4)) is also
adopted to align the feature distributions of images and models,
which benefits the knowledge transfer from labeled images to
unlabeled models.

Lagy = —Ex~p, log(1 — D(DI(G(x))))
—Ex~p,, log(D(DI(G(x))))

The above domain adversarial loss aims to align the overall
feature distributions of images and models, where D; and Dy
represent the feature distributions of image domain and model
domain respectively. DI(G(x)) is the output of the domain-specific
modeling network. i.e., the domain-invariant feature. D repre-
sents the domain discriminator.

The total adaptation loss can be written as follows:

Liotar = Lee + ISLadv + VLsf

where 8 and y are the trade-off parameters.

(4)

(5)

4. Experiments
4.1. Datasets

We conduct experiments on two cross-domain 3D model re-
trieval datasets, i.e., MI3DOR and MI3DOR-2. MI3DOR [51] is
the first monocular image-based 3D model retrieval benchmark
used in the 2019 SHREC competition, in which 2D images are
selected from ImageNet [52], and 3D models are selected from
ModelNet40 [53], ShapeNetCore55 [54], NTU [55], and PSB [56],
containing 21,000 2D images and 7690 3D models, with a total
of 21 categories. Among them, 10,500 2D images and 3842 3D
models are used as the training set, and the rest of the images
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and models are used as the test set. Some samples of the MI3DOR
dataset are shown in Fig. 2(a).

The MI3DOR-2 [23] dataset consists of 19,694 2D images and
3982 3D models, divided into 40 categories. The 2D images are
selected from Google, and the 3D models are selected from the
ModelNet40 [53] dataset. 400 2D images and 800 3D models are
selected as the test set, and the rest are used as the training set.
Some samples of the MI3DOR-2 dataset are shown in Fig. 2(b).
The MI3DOR-2 dataset has more categories of 2D images and
3D models than the MI3DOR dataset. Compared with MI3DOR-2,
the background of the 2D images in the MI3DOR dataset is more
complex.

4.2. Evaluation criteria

In order to evaluate the retrieval performance, we used six
evaluation criteria: the Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), F measure (F), Discounted Cumulative Gain
(DCG) and Average Normalized Modified Retrieval Rank (ANMRR)
as [57]. The values of these evaluation criteria are in the range
of 0 to 1. The smaller the value of the evaluation criterion AN-
MRR is, the better retrieval performance of the model is. The
larger the other five evaluation criteria are, the better the model
performance is.

4.3. Implementation details

In terms of the implementation details in the paper, we em-
ploy Resnet-50 [47] as the backbone for extracting features. We
keep the first four layers of backbone, and then add Domain-
specific Modeling Network (DSMN) to obtain domain invariant
representation. The fundamental network consists of one linear
layer, and the domain-specific network consists of three linear
layers with different initializations, of which the outputs are
added up at the end. Afterward, the obtained domain-invariant
features are fed into a linear layer for dimensionality reduction.
Finally, we use a two-layer MLP to implement the classifier.

We implemented our network on PyTorch with one NVIDIA
GTX 1080Ti (12G) and Intel(R) Xeon(R) CPU (64G). In our ex-
periments, the hyperparameter are set as follows: The trade-off
parameter 8 in Ly is set to 0.5. As the training progresses, y in-
creases from O to 1. The parameter T in the Ly loss function is set
to T = 10. The network parameters trained on ImageNet [52] are
used for initialization. The initial learning rate of the stochastic
gradient descent optimizer is set as 0.01, and the momentum is
0.9 and the weight decay is 0.0005. The batch size for training is
set to 64, and the training time is about 6 h.
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Table 1
Performance on MI3DOR.
NN FT ST F DGG ANMRR

MEDA [16] 0.430 0.344 0.501 0.046 0.361 0.646
JAN [17] 0.446 0.344 0.495 0.085 0.364 0.647
RevGard [24]  0.650 0.505 0.643 0.112 0.542 0.474
DLEA [23] 0.764 0.558 0.716 0.143 0.597 0.421
SC-IFA [15] 0.721 0.584 0.721 0.163 0.637 0.363
HIFA [14] 0.778 0.618 0.768 0.151 0.654 0.362
SADA [58] 0.783 0.638 0.793 0.154 0.672 0.343
Ours 07749 0.6303 0.7764 0.1509 0.6657 0.3513

Table 2

Performance on MI3DOR-2.

NN FT ST F DGG ANMRR

MEDA [16] 0.570 0.392 0.523 0.392 0.425 0.590
JAN [17] 0.608 0.501 0.646 0.501 0.527 0.484
RevGard [24]  0.623 0.467 0.614 0.467 0.503 0514
DLEA [23] 0.700 0.555 0.681 0.555 0.593 0.424
SC-IFA [15] 0.713 0.641 0.738 0.623 0.648 0.415
HIFA [14] 0.725 0.570 0.710 0.570 0.598 0.413
SADA [58] 0.738 0.615 0.746 0.615 0.651 0.366
Ours 0.7875 0.6714 0.7797 0.6714 0.7114 0.3077

4.4. Results and analysis

4.4.1. Comparison with existing methods

The proposed method is compared with previous methods
on the MI3DOR and MI3DOR-2 datasets. According to different
domain adaptation strategies, we divide these methods into two
categories: (1) metric learning-based methods; (2) adversarial
learning-based adaptation methods.

e The metric learning-based methods usually reduce the gen-
eration error of the 3D model domain by reducing the statis-
tical difference between the two domains. MEDA [16] uses
manifold feature learning to dynamically learn the impor-
tance of marginal distribution alignment and conditional
distribution alignment. JAN [17] utilizes a joint maximum
mean error metric to constrain the joint distribution of
features in the two domains. They mainly focus on measur-
ing the similarity of features and narrow the gap between
the two domains with metric criteria constraints. Compared
with adversarial learning methods, these methods are more
traditional and have slightly weaker performance.

e Adversarial learning-based adaptation methods mainly align
the 2D image domain and the 3D model domain through the
confrontation between the feature extractor and the domain
discriminator. Related methods are RevGard [24], DLEA [23],
SC-IFA [15], HIFA [14], and SADA [58]. The RevGard method
was originally proposed to add a domain discriminator after
the feature extraction module to align 2D images and 3D
models at the domain level. On this basis, some methods
use class-level constraints or instance-level constraints to
further reduce the data distribution differences between
images and 3D models. SADA adopts the method of self-
supervised auxiliary domain alignment and divides multiple
projections of the 3D model into two sub-target-domains
according to the similarity among the projections. The image
and model domains are then combined to build an inter-
mediate domain to ease the direct alignment of the image
domain and the model domain. Our method is based on ad-
versarial learning like them, but they pay more attention to
the entire feature of the image and the feature is processed
to align the two domains, but not all features are conducive
to domain alignment, our method models domain-specific
properties and eliminates them. On the other hand, paying
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attention to all the features of the image will also make the
complex background in the natural image also mixed, so
our method also designs the semantic focus loss contrast to
constrain.

The retrieval results on two datasets are shown in Tables 1 and
2 respectively. It can be observed that our method can achieve
better performance in most evaluation metrics.

We have the following observations on the performance of the
proposed method: (1) The adversarial training-based method is
better than the traditional metric learning-based method, which
benefits from the joint optimization of feature learning and cross-
domain adaptation. (2) Compared with adversarial learning-based
methods, our method also shows some advantages. DLEA, SC-IFA,
and HIFA methods mostly add category constraints or instance
constraints to both the image and model domains on the ba-
sis of adversarial learning to reduce the domain distance. Our
method alleviates the difference in data distribution between
the two domains by modeling and eliminating domain-specific
attributes, and eliminates the impact of negative semantics in
2D images through semantic focus loss. Compared with SADA,
we achieve comparable performance on MI3DOR and superior
results on MI3DOR-2, and the slight weakness on MI3DOR mainly
attributes to that we do not consider the relationship between
multiple views of the 3D model. (3) It can also be observed that
our method brings more performance gains on MI3DOR-2 than
those on MI3DOR. The reason is that MI3DOR-2 has more object
categories than the dataset MI3DOR, our method constructs intra-
domain and inter-domain sample pairs when constraining the
semantic concentration. Therefore, the more types of samples, the
more conducive to the training of sample pairs and the better
performance of the model can be achieved.

4.4.2. Ablation study

In this section, we validate the contribution of introducing
domain-specific modeling and semantic focus in the task of
image-based 3D model retrieval. The ablation results on MI3DOR
is shown in Table 3. “L, + Lgg,” represents the retrieval results
obtained under the condition of classification loss and domain
adversarial loss, which is also the baseline of this paper. “L. +
Lagy(+DSMN)” represents the retrieval results obtained by adding
domain-specific modeling network to the baseline, and the line of
“Lee+Laav+Lss” represents the retrieval results obtained by adding
semantic focus loss in the presence of a classification loss and a
domain adversarial loss. “Lce + Lagy + Lsf(+-DSMN)” represents the
retrieval result obtained by adding both the domain-specific mod-
eling and semantic focus loss to the baseline, i.e., the proposed
method.

From the ablation results, it can be found that the domain-
specific modeling brings the relative improvements of 6.4%, 11.1%,
7.9%, 11.1%, 11.0% and 16.1% towards the baseline in respect of
NN, FT, ST, F, DGG and ANMRR. It shows the effectiveness of
domain invariant representation by constructing domain-specific
networks for the task of image-based 3D model retrieval. Com-
paratively, semantic focus loss relatively improves the baseline
by 0.29%, 12.3%, 8.5%, 8.2%, 11.2% and 17.6% in terms of NN, FT,
ST, F, DGG and ANMRR. The proposed method (i.e., introducing
both the domain-specific modeling and semantic focus loss to
the baseline) performs best, which validates the necessity of each
module.

4.4.3. Qualitative evaluation

As shown in Fig. 3, we visualized the feature distributions
of images and models via T-SNE [59]. Red dots represent the
image features and blue dots are model features. Fig. 3(a) shows
the feature distributions with no adaptation, Fig. 3(b) shows the
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Table 3
Ablation results.
NN FT ST F DGG ANMRR
Lee + Lagy 0.7217 0.5373 0.6877 0.1319 0.5717 0.4462
Lee + Laay(+DSMN) 0.7678 0.5972 0.7419 0.1466 0.6344 0.3842
Lee + Lagy + Lsf 0.7238 0.6032 0.7459 0.1427 0.6356 0.3795
Lee + Lagy + Ly (+DSMN) 0.7749 0.6303 0.7764 0.1509 0.6657 0.3513

(a) Non-adapted

(b) Adversarial Adapted

(c¢) Our method

Fig. 3. Visualization for feature distributions. Red dots represent the image features and blue dots represent model features.
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Fig. 4. Cosine similarity of DI(X) and DS(X).
Table 4
Sensitivity analysis of the number of sub-networks on MI3DOR.
The number of DS NN FT ST F DGG ANMRR
1 0.7476 05574 0.6946 0.1408 0.5976 0.4229
2 0.7580 0.5690 0.7174 0.1421 0.6065 0.4125
3 0.7749 0.6303 0.7764 0.1509 0.6657 0.3513
4 0.7630 05896 0.7311 0.1452 0.6274 0.3921
5 0.7472 05937 0.7441 0.1429 0.6274 0.3894

distributions with the participation of adversarial learning (i.e,
the baseline of our work), and Fig. 3(c) shows the distributions
obtained by the proposed method. On one hand, the results show
that there exist a large discrepancy between images and models
and it is necessary to align the distributions for the task of image-
based 3D model retrieval. On the other hand, compared with
the adversarial alignment, the proposed method has a clearer
alignment at category level. More discriminative features will
boost the retrieval performance.

4.4.4. Sensitivity study

In the paper, the domain-specific network (DS) is responsible
for modeling domain-specific properties. The domain-invariant
representation can be obtained by subtracting the domain-
specific network’s output from the fundamental network’s out-
put. In order to capture more domain-specific attributes to en-
hance the ability of DS, an approach of integrating multiple
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Table 5

Sensitivity analysis of the number of sub-networks on MI3DOR-2.
The number of DS NN FT ST F DGG ANMRR
1 0.7525 0.6597 0.7677 0.6597 0.6941 0.3217
2 0.7625 0.6634 0.7789 0.6634 0.6954 0.3182
3 0.7875 0.6714 0.7797 0.6714 0.7114 0.3077
4 0.7750 0.6386 0.7554 0.6386 0.6763 0.3405
5 0.7425 0.6104 0.7410 0.6104 0.6583 0.3663

sub-networks to the model is adopted. To decide the optimal
number of sub-networks, we have supplemented sensitivity ex-
periments as shown in the Tables 4 and 5. When the number of
sub-networks increases, the model performance improves, indi-
cating that more sub-networks can enhance the modeling ability
of DS. The model achieves the best results when the number is
3. However, when the number of sub-networks exceeds 3, the
performance will be degraded due to risks such as too many
parameters or overfitting.

Different initializations might have different effects on the
performance of the model in terms of capturing different domain-
specific properties during training. Setting different initializations
for each sub-network makes the similarity between the sub-
networks lower during the training process, so that each sub-
network can model different local domain-specific properties. We
have carried out experiments to verify the above hypothesis and
calculated the cosine similarity between the outputs of the three
subnetworks (DS1, DS,, DS3) and domain invariant representation
(DI) respectively. As shown in Fig. 4, DI(X) and DS(X) are neg-
atively correlated, verifying that the correlation between DS(X)
representing domain-specific properties and DI(X) for domain-
invariant properties is low. And the similarity distributions of
different DS and DI are different, indicating that the domain
properties captured by different sub-networks are different.

4.4.5. Visual retrieval results

Some retrieval examples are given in Fig. 5, where the left
column is the image for query and the right columns are retrieved
3D models ranked at the top 5 positions. Above the dash we show
several successful cases while below the dash we show the failure
cases. The main reasons for the failure cases mainly lie in the
following aspects: (1) shape similarities, e.g., some cameras and
radios, and some cups and vases; (2) semantic overlaps, e.g., plant
and flower; (3) co-existence of objects, e.g., a desk and a chair
locate in the same image.
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Fig. 5. Visual retrieval results on MI3DOR and MI3DOR-2.

5. Conclusion and future work

In this paper, we try to overcome two problems existing in the
image-based 3D model retrieval task. To narrow the modality gap,
we model domain-specific attributes for 2D images and multi-
view represented 3D models, and align the domain invariant
features. To alleviate the negative effects caused by the complex
backgrounds of 2D images, we introduce semantic focus loss
to make the feature extraction concentrate on the dominant
semantics. We have conducted extensive experiments including
comparison with existing methods, ablation study, feature distri-
bution visualization and visual retrieval results, and the results
show the effectiveness of the proposed method.

Although our method has achieved good results, there is still
space for improvements. Our proposed method does not take
into account the relationship between multiple views of a 3D
model, so future research should consider using graph convo-
lutional neural networks to analyze and calculate the structural
information of views from different perspectives and the relation-
ships between them. In addition, our method directly utilizes the
output of the classifier as pseudo labels for 3D model samples.
However, in the early stages of training, the classifier’s classifi-
cation performance for unlabeled 3D models is not good, result-
ing in low accuracy of pseudo labels. Therefore, in future work,
we can improve the accuracy of image-image pairs and image-
model pairs in the semantic focus loss by designing algorithms
to improve the accuracy of pseudo-labels, thereby improving the
retrieval performance.
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