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ABSTRACT

We present an efficient method to propagate sparse user edits indicated by strokes on 360° panoramas.
Our algorithm first projects each equirectangular pixel to its corresponding position on a 3D unit sphere,
so each pixel can be characterized by a feature vector consisting of its 3D coordinates and RGB color
values. We formulate edit propagation as an optimization problem that aims to satisfy the user edit con-
straints while preserving the manifold structure of the image at the same time. To solve the problem
using a linear system efficiently, we first construct the K-D tree structure in the feature space to cluster
pixels. Then we optimize the manifold structure where both the number of nearest neighbors and their
corresponding weights are determined by the feature distributions. We further apply a multiresolution
strategy to speedup the edit propagation. Our method is the first to perform interactive edit propaga-
tion on 360° panoramas. Experiments show that our method is able to generate seam-free and visually

pleasing results, and users can receive instant feedback during interactive editing.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

360° panoramas allow recording a 360° view of the place be-
ing photographed, which has been used as an important source of
Virtual Reality (VR) media. The most immersive way to view 360°
panoramas is to use a dedicated head mounted display (HMD) like
the Oculus Rift or HTC Vive. Due to its recent popularity, support
for viewing panoramic contents has been added in traditional im-
age viewers, where users can drag to view different parts of a
panorama. While most recent works focus on panorama genera-
tion and compression [1], less attention has been paid to panorama
editing. Directly applying planar image editing techniques to 360°
panoramas is both inappropriate and inefficient for the following
reasons: (1) 360° panorama is essentially defined on a spherical
surface, which means directly applying distance metric used for 2D
planar images is problematic, and can lead to visible seams and
inconsistent propagations after editing (see e.g. Figs. 7, and 9); (2)
panoramic images usually contain more content than planar im-
ages as they cover the entire 360° field-of-view, making the com-
putational complexity and memory cost much higher.
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Edit propagation is one of most important problems in im-
age editing, which aims to propagate pixel-wise edits indicated by
users’ strokes to all the pixels in the image, with similar pixels
nearby receiving most influence. The edits could be the amount
of color adjustment, relighting, transparency value for defogging
or matting, etc. Traditional image edit propagation techniques
[2-6] map all the pixels to a 5D feature space (r,g, b, x,y) where
r,g, b correspond to colors, and x, y are the pixel coordinates in
2D image plane. They favor the pixels with similar features to re-
ceive similar edits as the pixels covered by strokes and formu-
late this as an optimization problem to maximize that similarity
while maintaining image structure. Different from the above meth-
ods, we take 360° panoramas using the equirectangular represen-
tation. Under this setting, the actual horizontal distance between
the points represented by two neighboring pixels decreases along
with increasing latitude. We visualize this distortion by the Tissot’s
indicatrices over a equirectangular 360° image in Fig. 1. This gives
an intuition that common 2D distance metrics poorly describe the
spatial relationship between pixels in an equirectangular image. In
this paper, we lift pixels on the 2D image plane to their 3D spher-
ical positions, where their actual distances can be approximated.
More specifically, in an efficient KNN (K-nearest neighbor) search
step, the distance between two pixels is calculated as their Eu-
clidean distance in 3D coordinates. Then in the propagation step,
the accurate big circle distance is used for effective propagation.
The 3D spherical position along with RGB color channels form a
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Spherical 360 image

The equirectangular image with Tissot's indicatrices

Fig. 1. Visualization of distortions in a 360° panoramas.

6D feature space (1,8, b,x.,y,z), and we use the method of [7] to
preserve the high-dimensional manifold structure, which helps to
propagate users’ edits in a spatially consistent manner. Since the
optimization is performed over all the pixels, and the main compu-
tational cost lies in the optimization that involves solving a system
of linear equations with the same scale as the number of pixels,
we need to reduce the scale of the linear system since a typical
panorama contains millions of pixels. To achieve this without de-
grading the visual quality, we propose to use two techniques for
acceleration. We first cluster all pixels using a K-D tree structure in
the feature space and just use the node corners of the K-D tree to
approximate original pixels. huThis significantly reduces computa-
tion time and saves memory as the number of corners is orders of
magnitude less than that of pixels. Then we just need to optimize
the manifold structure of all the node corners by the adaptive KNN
(K nearest neighbor) method where the number of nearest neigh-
bors and the corresponding weights are determined by the feature
distributions. For instant edit propagation in ultra high-definition
panoramas, we further propose a multiresolution approach.

Inspired by previous edit propagation methods for planar im-
ages [2-6], our edit propagation on 360° panoramas is formulated
as an optimization that aims to maximize the similarity of the ed-
its between pixels with similar features with the following con-
straints: (1) edits on stroke pixels need to be maintained; (2) the
amount of edits on other pixels should be determined by their dis-
tance to stroke pixels in the feature space. Since pixels of 360° im-
ages are essentially distributed on a sphere, their distance should
be measured by the great circle distance,! which poses a challenge
for the optimization. By approximating the great circle between
two points by the line segment connecting them, we can approx-
imate the manifold by a linear structure locally, and the problem
can be formulated using a linear system and solved efficiently. This
approximation maintains the ordering of distances compared with
great circle distances, and is a more accurate approximation for
close pixels which are more important for edit propagation.

To the best of our knowledge, we are the first to propose a
stroke-based editing approach on 360° panoramas, and users only
provide sparse strokes, thus avoiding the laborious and tedious re-
gions of interest (ROIs) selection. We summarize our main contri-
butions as follows:

« We propose the first stroke-based edit propagation method on
360° panoramas, which provides seam-free and visually pleas-
ing editing results by introducing the spherical distance metric
and constructing the manifold structure for each pixel in the
spherical domain.

e To achieve instant feedback when propagating edits on ultra
high-definition 360° panoramas, we further develop an efficient
solution to propagate user-specified edits while preserving the
spherical manifold structure and editing quality.

1 A great circle is any circle that circumnavigates the sphere and passes through
the center of the sphere. The great circle distance is the arc length between two
points on the great circle that passes through the two points.
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2. Related work
2.1. Edit propagation

The pioneering work in edit propagation, proposed by An and
Pellacini [8], created a simple and intuitive interface for image
editing, where users only provide sparse inputs (usually strokes)
while the algorithm propagates the edits to the proper regions in
the rest of the image, based on the pixel-level affinities. Due to the
huge number of pixels, formulating the affinity-based edit prop-
agation as an energy minimization problem that involves an all-
pixel-pair propagation energy makes it infeasible to solve instantly.
One way for acceleration is to use clusters [9,10] to represent pix-
els as their linear combinations, which significantly reduces the
number of unknown variables. By reformulating edit propagation
as a function interpolation problem in a high-dimensional feature
space, Li et al. [6] efficiently solved the problem using radial basis
functions. Another interpolation based method, proposed by Yata-
gawa and Yamaguchi [11], approximated the edit parameters with
convex combinations of samples, which can achieve a better accu-
racy in terms of colors and edit parameters. Another acceleration
approach worth mentioning is the hierarchical data structure based
method [12] which achieved scalable edit propagation.

Besides the efficiency improvements, much research attention
has been paid to improving the visual quality of edit propaga-
tion. To avoid visual artifacts after editing, Ma and Xu [13] pro-
posed an algorithm to mitigate the aliasing artifacts. While the
method is simple to implement, it achieves excellent anti-aliasing
results. Chen et al. [7] first proposed manifold preserving edit
propagation. By representing each pixel as a linear combination of
its neighbors in the feature space, their method is more robust to
color blending in the input data compared with previous methods.
Manifold preserving edit propagation can be accelerated by K-D
trees [5] or quad-trees [2]. These approaches however require ad-
equate user inputs to ensure editing quality. To address this, some
frameworks [14,15] target reducing the burden at the user end by
only requiring a small amount of user guidance. Besides edit prop-
agation on images, Yatagawa and Yamaguchi [16] proposed a tem-
porally coherent video editing method on a frame-by-frame basis.

Recently, machine learning based methods, especially deep
learning based approaches, have been successfully applied to edit
propagation. Oh et al. [17] formulated the edit propagation as a
classification problem which can be efficiently solved using a sup-
port vector machine (SVM) to support high-resolution image in-
puts. Chen et al. [4] proposed to utilize sparse dictionary learning
to improve the memory efficiency while maintaining a high visual
fidelity. Zhang et al. [18] proposed a color decomposition method
for flexibly recoloring images while preserving the inherent color
characteristics. Endo et al. [3] trained a deep neural network on
users’ strokes and used the trained model to determine in which
regions to propagate the edits.

While all the above methods achieve promising edit propaga-
tion results on 2D planar images/videos, directly applying them to
360° panoramas without considering 3D spatial relations between
pixels leads to unsatisfactory results.

2.2. 360° panorama editing

360° media, consisting of 360° videos and images, is a great
way in VR applications to provide users with an immersive ex-
perience. Due to the limitations in devices, directly capturing
360° panoramas using an ultra-wide camera suffers from image
quality loss, especially in the regions far from the image center.
Therefore, the most popular way in 360° panorama creation is
stitching together multiple images captured by a multi-camera
rig [19,20]. Then proper blending techniques [21] can be used to
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Fig. 2. Transformation of equirectangular coordinates into spherical coordinates.

ensure a smooth transition between overlapping images. However,
existing multi-camera rigs usually cannot capture the entire 360°
field of view, and completion [22] techniques are usually applied
to hole regions which often appear at the top or bottom of the
panorama. A detailed survey about panoramic content creation
can be found in [23]. The quality of the constructed panoramas
can be evaluated using visual quality assessment [1]. Typical
editing operations, such as copy-and-paste [24], can be adapted
to 360° panoramas by considering the sphere geometry constraint
embedded in panoramic images. Such constraints also need to be
taken into account in panoramic image classification [25,26] and
object detection [27] in panoramas.

3. Our approach
3.1. Overview

As shown in Fig. 7 (left), the input of our method is an equirect-
angular 360° panorama and user-specified strokes indicating the
desired edits (with different colors indicating different types of
appearance editing, e.g., a red stroke means recoloring to red,
while a black stroke means keeping unchanged). In our framework,
each pixel of the input 360° panorama is characterized by a 6-
dimensional feature vector f; = (¢;/o¢, pi/op). where ¢; refers to its
RGB color and p; refers to its 3D position (x,y,z) on a unit sphere.
oc and op are used to balance the importance of the two compo-
nents.

To project the 2D coordinate of a pixel P(xp,yp) (See Fig. 2)
in an equirectangular image (width = W, height = H) to its 3D
spherical coordinate (x,y,z), we first calculate its longitude and
latitude coordinates (A, ¢) on the sphere by

{/\=((xp+0.5)/w—o.5)*2*n 0

¢=(05-yp+05)/H)xm.

Then, we calculate its 3D coordinates on a unit sphere, where we
set the 3D point (1,0, 0) as the original point, and set its longitude
and latitude to 0. Finally the 3D coordinates can be calculated as

X = COS@ CoSA
y=cos¢sinA
z=sing.

(2)

Because 360° panoramas are essentially defined on sphere, the
actual distance between pixels cannot be measured correctly by di-
rectly applying the Euclidean distance metric on (x,y) image coor-
dinates. Instead, using (x, y, z) spherical coordinates can reflect the
actual positions of pixels and guarantee correct edit propagation
on the spherical domain. It not only conforms to the spherical na-
ture of 360° images, but also simplifies and accelerates the KNN
search on sphere, thus can well preserve the spherical manifold
structure in edit propagation.

We formulate the 360° panorama edit propagation as an op-
timization problem, where we encourage the solution to preserve
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the edits on pixels within the strokes while propagating the ed-
its to nearby pixels in the feature space, making the editing re-
sults more natural. Inspired by Chen et al. [2,5,7], our optimization
for edit propagation is formulated in a manifold-preserving frame-
work.

In the following subsections, we first describe how to construct
the manifold on 360° panoramas. Then we present the mathemat-
ical formulation of the edit propagation on panoramas, which is an
energy minimization defined on pixel edits. We also provide sev-
eral techniques to speed up the computation, including K-D tree
clustering, adaptive KNN and multiresolution speedup.

3.2. Manifold construction on 360° panoramas

Inspired by Roweis and Saul [28], we use Locally Linear Em-
bedding (LLE) to map a high dimensional space to a low dimen-
sional manifold, with the intuition that each feature point can be
approximately described by a linear combination of its neighbors.
The weight of each neighbor is calculated by minimizing the fol-
lowing objective:

N K
DO =D i, |
i1 =1

where N refers to the number of pixels, K is the number of neigh-
bors used for a pixel. wj; is the weight for the jth neighbor of the
ith pixel, satisfying 25-(:1 w;jj = 1. n;; is the pixel index of the jth
neighbor of the ith pixel. f; is the feature vector of the ith pixel
and fnij is the feature vector of its jth neighbor.

To minimize the above defined energy function, we first need
to find out the neighbors for each pixel. Existing K-nearest neigh-
bor (KNN) search techniques are designed based on the L2-Norm
between the feature vectors, which means that all dimensions will
be treated equally when calculating the distance. However, on the
spherical surface, the spatial distance between two points should
be the great-circle distance, i.e., the length of the arc connecting
them, see Fig. 2. To be compatible with existing KNN search tech-
niques, we instead use the Euclidean distance(P’'Q’) between the
two points to approximate their great-circle distance ( P’Q’ ), since
the Euclidean distance can be easily obtained by calculating the L2-
Norm between their coordinates in 3D space. This is also a reason-
able approximation since only spatially close pixels are of concern
in this process, and we can utilize efficient KNN search technolo-
gies (such as a K-D tree) to calculate the top K nearest neighbors
of each pixel. The weight matrix W, which is an N x K matrix and
whose element w;; is defined in Eq. 3, can be obtained by solving
a sparse linear system [28].

%, (3)

3.3. Manifold preserving edit propagation

We denote users’ edit for each pixel as g; and its propagated
edit as e;. Note that g; is known and e; is the target to optimize.
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To obtain the optimal e; for every pixel in a manifold preserving
manner, we define the following energy function [7]:

N N K 2
E=) u(ei—g)*+) |ei—D wien | .
i1 i1 =1

where u; € {0,1} is the edit indicator, used to indicate whether
there is user edit on pixel i (O - no user edits, 1 - otherwise). The
first term of the energy function encourages the final result to fol-
low the users’ edits, while the second term preserves the manifold
structure of the panorama. We do not give weights to them since
we think those two terms are of equal importance.

(4)

3.4. Optimization

Since the energy function defined in Eq. (4) is quadratic, it can
be minimized by solving a large sparse linear system. However, di-
rectly solving it is costly since the complexity of the linear sys-
tem depends on the pixel number N (in the order of millions for
panoramas) and neighborhood size K of each pixel. For instant
feedback, we prefer smaller N and K, and propose the following
acceleration strategies. We use a K-D tree to cluster all the pix-
els in the feature space to reduce the number of unknowns in the
above objective, see Section 3.4.1. We also propose adaptive KNN
to adaptively determine the neighborhood size K and weights of
neighbors, see Section 3.4.2. For further acceleration, we propose a
multiresolution speedup strategy, see Section 3.4.3. By combining
those strategies, we achieved significant acceleration without loss
of the quality of editing results.

3.4.1. K-D tree construction

As in [5,9], we apply the K-D tree structure to cluster the pixels
of the input 360° panorama in the feature space. With this hierar-
chical data structure, the objective can be rewritten as a function
of the K-D tree node corners instead of pixels, which largely re-
duces the number of unknowns and order of magnitude. With M
(M << N) indicating the number of node corners of the K-D tree,
the energy function in Eq. (4) can be rewritten as:

2

M M k
E=Y mi|m@ -8+ &—-Y wie] | (5)
i=1 i=1 j=1

where i enumerates all node corners of the K-D tree; ii;e [0, 1] and
g; refer to the edit strength and the value at node corner i, which
are defined as a weighted sum of all pixels in the neighboring tree
nodes. m; is used to define the multiplicity of pixels contributing
to the node corner (see [5] for more details). w;; represents the
weights of neighboring node corners of node corner i, which are
used to reconstruct the manifold structure over all node corners.
With the edited result €; on each node corner, we calculate the
edit on each pixel through a multiple linear interpolation using its
enclosing node corners.

3.4.2. Adaptive KNN

After the K-D tree construction, the manifold structure is re-
constructed using the node corners, and now KNN refers to the K
nearest corners. In this section, we propose to optimize the mani-
fold structure using the adaptive KNN, which adaptively determines
the number of nearest neighbors and their corresponding weights
according to the feature distributions. See Fig. 3, the fixed K strat-
egy is not optimal, and it always requires larger K to ensure satis-
fying editing results. Inspired by Ma and Xu [5], we propose to use
an adaptive K to achieve a good balance between the efficiency
and visual effects. Observing that different regions in the spherical
domain require different numbers of neighbors to preserve their
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local manifold structure (e.g., a K-D tree node corner with many
close-by neighbors in the feature space or regions in high latitude
require fewer neighbors), we define the local density of a node cor-
ner as the averaged [2-Norm to its K; neighbors.

Ky

>l =y ll2,
j=1

where Kj is a constant and refers to the number of neighbors used
to calculate density, and we set K; = 8 in this paper; f;, fy; are the

1
d; = K, (6)

feature vectors of node corners i and its j™ neighbor corner, re-
spectively. Then the adaptive number of neighborhood K; for each
node corner i is defined as:

di—d.
K; = cos(a-0) - _t  Tmin

max —

(Kmax - Kmin) + Kmin’ (7)
where di,, dmax refer to the minimum and maximum distances
between all neighbors respectively, and K,;,, Kmax define the dy-
namic range of the number of neighbors. Since the 360° panorama
is severely stretched near the polar regions in its equirectangular
representation, we use cos(a- ) as a weight to give less impact to
node corners closer to the poles of the sphere. 6 is the latitude,
and a is used to constrain the weight change. In our experiments,
we set Kyin = 2, Kmax = 8 and a = 0.6.

In general, minimizing Eq. (5) preserves the manifold structure
of each node corner. To speedup the minimization, we propose to
optimize the manifold structure by further magnifying the weights
of similar node corners, while reducing the weights of nodes with
large differences, which is defined as:

wij - (14 B&ij)

dmin

Wij = ; (8)
! Z;(; wij - (1+ B&;j)
where
2 5
Gj=1-S{ (6 =650 + fare [ D (£ —£)?
k=0 k=3

S(-) is the Sigmoid function defined as S(x) = 1/(e~* + 1), which
can smoothly map variable values from 0 to 1, and we use it to
adjust the weights of neighbors of a point, where similar node cor-
ners get larger weights. ¢ refers to the sum of color distance and
position distance on the sphere, and we set 8 = 0.5 in our imple-
mentation. f;‘ denotes the kth component of the feature vector of
the ith node corner, where k =0, 1, 2 refers to the r, g, b values,
and k = 3, 4,5 refers to the x, y, z coordinates on the unit sphere.
As shown in the right of Fig. 2, fqrc(-) maps the Euclidean distance
(P'Q’) to the great circle distance (P'Q’ ), which is defined as:

fare(d) = (2 arcsin(y/d/2))?. (9)

This mapping makes the adjustment of weights better correlates to
the actual distance on the sphere.

3.4.3. Multiresolution speedup with downsampling and guided
filtering based refinement

360° panoramas are born to be high-resolution, and typically
contain tens of millions of pixels, which makes the KNN search, K-
D tree construction and interpolation very time-consuming. For ef-
ficient propagation, we design a novel workflow as shown in Fig. 4.
Taking an ultra high-resolution 360° panorama image as input, we
first downsample it to a lower resolution, and then use the K-D
tree structure to hierarchically cluster all pixels, and minimize the
energy function on clustered node corners to obtain the editing
map. After obtaining the editing map under low resolution, we
upsample [29] it to the original size of the input panorama, and
refine it using the guided filter [30], which takes the original in-
put panorama as reference. Finally, with the refined editing map
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’ our vage K=35

Fig. 3. Comparisons between different K-value strategies. Black strokes indicate regions to remain unchanged, white strokes indicate regions to relight, and strokes of other
colors indicate the regions to edit to the same target colors. Column 1: input image with strokes. Column 2: results using fixed K. Column 3: results using adaptive K strategy
of Ma and Xu [5]. Column 4: results using our adaptive K strategy. See the zoom-in views and propagation maps for detailed comparisons.

360°panorama
downsampling

Input
360°panorama

Edit propagation
based on KD-tree

v

Propagation map
upsampling

— —>

Rendering editing
result

Propagation map
refinement

< <—

Fig. 4. Flowchart for edit propagation of HD images.

editing mask

editing result

upsampling

upsampling&filtering

Fig. 5. Comparison of results obtained with direct upsampling and our approach
using propagation map upsampling and guided filtering.

and user-specified edits, we render the final editing result. An ex-
ample of the upsampled propagation map and the corresponding
editing result is shown in Fig. 5. Compared with the result of di-
rect upsampling approach, the result of our method (upsampling
& filtering) is more visually pleasing with clearer boundaries be-
tween affected and unchanged regions.

4. Results

Our experiments are performed on a PC with an Intel i7-8700
3.2 GHz CPU and 32 GB RAM. We implement our method in C++,
and set o = 0.2, op = 1.0, Kiyjp, = 2, Kmax = 8 for all the cases. We
demonstrate the effectiveness of our approach on a variety of edit-
ing tasks, including panorama relighting, panorama recoloring and
panorama background replacement. We also apply these tasks to
panoramic videos. Compared with previous edit propagation meth-
ods, our approach is more flexible since it supports multiple-color
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editing and simultaneous recoloring and relighting. In all examples
of this paper, we use black strokes to indicate regions to remain
unchanged, white strokes to indicate regions to relight (we will set
new light values for editing), and strokes of other colors to indicate
regions to recolor.

4.1. Evaluation

To evaluate our approach, we demonstrate the effectiveness of
the adaptive KNN strategy, progressive propagation and compare
our approach with other state-of-the-art approaches. We also eval-
uate the efficiency of our approach.

Adaptive K. Using Adaptive K in our approach is critical for vi-
sually consistent editing. We compare the results of our approach
using fixed K, adaptive K in [5] and our adaptive K strategy in
Fig. 3. We aim to darken the sky and recolor the ground in the
first example, and turn the leaves green in the second example.
The zoom-in views show that the fixed K =5 cannot well propa-
gate the relighting edits thoroughly and fail to propagate the green
color in the left side, whereas previous work [5] and our adaptive
strategy can produce better darkening and recoloring effects. Com-
pared with [5], our strategy can generate slightly better darkening
and recoloring results, and the smaller average K values help to
reduce the time and memory cost.

Progressive propagation. To better demonstrate how the edit
propagation works if users draw multiple strokes, we perform pro-
gressive propagation, in which we propagate edits for strokes of
the same color in each step. See Fig. 6, in the first step, the
ground region is painted yellow by the yellow strokes, while the
sky and grass regions are incorrectly colored because there are
no other constraints to keep their original color; then the top re-
gion turns to orange after drawing orange strokes; finally, the sky
and grass regions get their original colors back after placing a few
black strokes (which indicate maintaining their original colors).
The three steps above vividly show the role of each set of strokes
and their affected areas. Propagating edits progressively can guide
users to place more strokes to achieve appropriate results. We also
provide edit propagation maps for the orange and yellow strokes
in each step.

Comparisons with state-of-the-art methods. We first compare our
method with the latest state-of-the-art edit propagation method
(Manifold quad-tree) [2] in Fig. 7, and our method is superior in
generating seam-free results; see the close-up images. We also
compare our method with other representative methods, includ-
ing interpolation based method (RBF) [6], manifold preserving
method (Manifold K-D tree) [5] and deep learning based method
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Fig. 6. Edit propagation results by drawing strokes progressively. In the first step, yellow strokes are placed to color the ground region; then, a few orange strokes are added
to color the top and middle region; in the final step, black strokes are drawn to indicate pixels that need to be kept unchanged. The second row shows the edit propagation
results after propagating the edits indicated by the strokes in each step. The last row gives propagation maps w.r.t. orange and yellow strokes respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Chen etal. 2018

Ours

Fig. 7. Comparisons with the method in Chen et al. [2]. The strokes in the input are defined in the same way as in Fig. 3. The zoom-in windows magnify patches crossing
equirectangular vertical boundaries, and the origins of the close-ups are shown in both equirectangular and spherical views using different colored rectangular windows. We
also provide their propagation maps for better comparisons (see the top-left corner). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

(DeepProp) [3]. Results are shown in Fig. 8. Since previous meth-
ods define neighborhoods in 2D plane, they all suffer from the
“seam” problem due to the discontinuity between the left and
right boundaries, and the propagation always fails to expand near
the pole region; see the zoom-in views and propagation maps. As
for the result of (DeepProp) [3] in the top-right, although it avoids
the “seam” problem, there are many artifacts indicated by yellow
arrows due to the incorrect propagation. In contrast, our method
produces smoother and more natural-looking propagation results
without noticeable artifacts.

For fair comparison, we also compare our results with the edit-
ing results of altered 2D edit propagation methods that consider
cyclic images, see the first two rows of Fig. 9. The spherical views
show that the continuity problem on the rectangular representa-
tion could be fixed by using the cyclic 2D distance metric. How-
ever, measuring the pixel distance in the 2D domain inevitably re-
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sults in inaccurate distance between pixels, and the error increases
from the equator to the top and bottom ends in the 2D domain.
In order to correctly measure the distance between neighboring
pixels, we instead consider their distance in the spherical domain.
The 3D representation we use is a way that can approximate the
distance on the spherical surface, and experiments show the ad-
vantages of our method over previous ones; see the marked green
boxes and edit propagation maps in Fig. 9.

To investigate how the lengths of strokes affect the final editing
results, we also provide additional examples using more and longer
strokes which can mitigate the problem of insufficient strokes near
top/bottom regions, as shown in the last two rows of Fig. 9. Ob-
viously providing more and longer strokes improves the results
of all the methods, the results of our method are still more con-
sistent and smoother than the results of other methods; see the
marked green boxes and propagation maps in Fig. 9. In addition,
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Fig. 8. Comparisons with the methods in Li et al. [6], Ma and Xu [5] and Endo et al. [3]. The strokes in the input are defined in the same way as in Fig. 3. Methods in
[3,5,6] all generate pixels with inconsistent colors at the left and right border of the equirectangular image. In comparison, our method could generate smooth transition
on the border region if users watch that region in the VR mode. More particularly, although the method in [3] is able to generate consistent color at the border sometimes
(top-right), it cannot preserve the texture details well, and produces more artifacts (see the yellow arrows). For better comparisons, we also provide the propagation map of
each result (see the bottom-left corner). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Results with intial strokes

Results with more/longer strokes

Input Lietal. 2010 Lietal. 2010 & Cyclic image Ours

Fig. 9. Comparison with 2D edit propagation on cyclic images. The first two rows give the results using initial strokes, and the next two rows show the results using more
and longer strokes. The input strokes are defined in the same way as in Fig. 3. The second column shows the edit propagation results of Li et al. [6]; the third column
improves the result of the second column by considering the cyclic images; the last column is our results. For better demonstration, we also provide the propagation
maps and spherical views in left and right corners. The green boxes indicate the differences between the results of performing [6] on cyclic images and our method. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Input

Ma et al. 2014

Fig. 10. More comparisons with the method of Ma and Xu [5]. Compared with [5], our method can smoothly propagate edits in the spherical domain, and can better preserve
the continuity of the editing between the left and right boundaries. For better comparisons, we provide propagation maps, spherical and zoom-in views. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Performance comparisons.
Fig. 7(1) Fig. 7(2) Fig. 8(1) Fig. 8(2) Fig. 10(1) Fig. 13(2) Fig. 13(3)

Type image image image image image video video
Resolution 5120 x 2560 6144 x 3072 12362 x 6181 6144 x 3072 6000 x 3000 1280 x 640 1920 x 960
#. Frames - - - - - 272 225
w/o Multiresolution 9.5s 17.7s 31.4s 15.5s 17.6s - -
Multiresolution
Adaptive K [5] 2.5s 3.4s 6.9s 3.2s 3.3s 39.5s 50.9s
Our Adaptive K 1.6s 2.1s 5.8s 1.9s 1.7s 25.5s 39.6s
Li et al. [6] 1.8s 2.3s 4.9s 1.6s 1.4s 20.8s 35.7s
Ma et al. [5] 2.7s 2.5s 6.1s 2.2s 2.4s 31.7s 57.6s

our method is more efficient because fewer strokes help to reduce
the complexity of optimization.

We give more comparison results between our method and pre-
vious manifold preserving edit propagation method [5] in Fig. 10.
Results marked in blue and orange are produced by Ma and Xu
[5] and our method, respectively. Our method performs better
in these cases, where the continuity between the left and right
boundaries is well preserved and the sparse edits are smoothly
propagated in the spherical domain; see the spherical, zoom-in
views and propagation maps of each example.

Performance. In Table 1, we give the performance of different
methods on the images/videos appeared in this paper. Those in-
clude our method using adaptive K strategy in [5]| and our adap-
tive K and weighting strategy. Given that most input 360° panora-
mas contain millions of pixels, we apply the K-D tree accelera-
tion for all the cases to save memory and reduce computational
cost. Take the first case of Fig. 7 as an example, our method takes
a total of 1.6s, which includes the K-D tree construction(0.08s),
KNN search(0.53s), energy minimization(0.39s), K-D tree interpola-
tion(0.03s), color adjustment(0.17s) and multiresolution(0.4s). We
also compare the performance of our method with and without
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the multiresolution strategy. Without the multiresolution strategy,
a 360° panorama containing 12362 x 6181 (more than 76 Million)
pixels costs 31.4s using our adaptive K and weighting strategy.
With the multiresolution strategy, the adaptive K [5] costs 6.9s and
our adaptive KNN strategy costs only 5.8s, which is a significant
improvement over previous methods. Finally, we report the perfor-
mance of previous 2D edit propagation methods [5,6]. For a fair
comparison, we also apply the multiresolution strategy on the pre-
vious methods. Results show that our method is faster than [5],
and achieves comparable performance with [6].

4.2. Applications

Our method enables many interesting image editing applica-
tions, and can produce visually pleasing editing results. Fig. 11
shows an application of background replacement. We let users
draw black and white strokes on the input panoramic image to
roughly specify the background and foreground content. Then our
edit propagation method is used to calculate the possibilities of
pixels belonging to background to generate a soft background
mask. Such masks are then used as a guide to blend two 360°
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Background Replacement

Fig. 11. Background replacement of 360° panoramas.

(a) Source image and color theme

(b) Color theme editing - 1

&
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(c) Color theme editing - 2

Fig. 12. Color theme adjustment for 360° panoramas.

frame 10

frame 39

frame 169

frame 10

frame 39 frame 169

frame 64

frame 122

frame 64 frame 122

Fig. 13. Edit propagation in 360° videos.

panoramas to produce background replacement results. Fig. 12
presents another application which adjusts the color theme of 360°
panoramas.

We also extend our algorithm to 360° videos. For 360° videos,
we add another time dimension t, and the feature vector be-
comes a 7D vector f; = (¢;/oc, p;/0p, tj/ot), where o is a param-
eter used to set the importance of the time dimension. We first
specify edits by sparse strokes in keyframes, and feature vec-
tors in all frames are organized together, and the video propa-
gation problem can be solved in the image propagation frame-
work. For better propagation across frames, we set o; = 10.0 for
each feature vector. Fig. 13 shows propagation results in 360°
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videos?. For simple scenes we only need to specify edits in a
few frames, and the edits can be smoothly propagated across all
frames.

5. Conclusions

In this paper, we propose an approach to efficiently propagat-
ing sparse edits on 360° panoramas. We formulate this problem
as an energy optimization, and our solution preserves the edits
on strokes and the manifold structure of each pixel. To produce

2 See the video demo of our results at https://youtu.be/sF9X-jae2dA.
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seam-free and visually pleasing results, we map the 2D equirectan-
gular pixels to the 3D coordinates, and approximate the spherical
distance with the Euclidean distance in 3D space, which enables
fast KNN searches in the feature space. To provide instant feed-
back during the interactive editing, we propose an effective solu-
tion which includes the following strategies: K-D tree construction
to cluster pixels in feature space, which largely reduces unknowns
in the linear equations to solve; adaptive KNN, which further sim-
plifies the linear system of the optimization while improving the
visual quality of the editing results at the same time; a multires-
olution approach with a downsampling-upsampling strategy for
further acceleration. Comparative results show that our proposed
method is advantageous over previous methods, and can produce
satisfying edit propagation results efficiently.

Our method has the following limitations: (1) since only the
color and position information is used to represent the feature vec-
tor, our method is not aware of the semantic information, which
may lead to incorrect color propagation in challenging cases; 2)
users still need to carefully specify strokes as incorrect strokes may
introduce artifacts.

In the future, we will consider adding more features to repre-
sent pixels, such as textures and semantic information, to enable
high-level edit propagation in 360° panoramas. For more efficient
user interaction, we will also consider more intuitive and robust
ways of user guidance.
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