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a b s t r a c t 

We present an efficient method to propagate sparse user edits indicated by strokes on 360 ◦ panoramas. 

Our algorithm first projects each equirectangular pixel to its corresponding position on a 3D unit sphere, 

so each pixel can be characterized by a feature vector consisting of its 3D coordinates and RGB color 

values. We formulate edit propagation as an optimization problem that aims to satisfy the user edit con- 

straints while preserving the manifold structure of the image at the same time. To solve the problem 

using a linear system efficiently, we first construct the K-D tree structure in the feature space to cluster 

pixels. Then we optimize the manifold structure where both the number of nearest neighbors and their 

corresponding weights are determined by the feature distributions. We further apply a multiresolution 

strategy to speedup the edit propagation. Our method is the first to perform interactive edit propaga- 

tion on 360 ◦ panoramas. Experiments show that our method is able to generate seam-free and visually 

pleasing results, and users can receive instant feedback during interactive editing. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

360 ◦ panoramas allow recording a 360 ◦ view of the place be- 

ng photographed, which has been used as an important source of 

irtual Reality (VR) media. The most immersive way to view 360 ◦

anoramas is to use a dedicated head mounted display (HMD) like 

he Oculus Rift or HTC Vive. Due to its recent popularity, support 

or viewing panoramic contents has been added in traditional im- 

ge viewers, where users can drag to view different parts of a 

anorama. While most recent works focus on panorama genera- 

ion and compression [1] , less attention has been paid to panorama 

diting. Directly applying planar image editing techniques to 360 ◦

anoramas is both inappropriate and inefficient for the following 

easons: (1) 360 ◦ panorama is essentially defined on a spherical 

urface, which means directly applying distance metric used for 2D 

lanar images is problematic, and can lead to visible seams and 

nconsistent propagations after editing (see e.g. Figs. 7 , and 9 ); (2) 

anoramic images usually contain more content than planar im- 

ges as they cover the entire 360 ◦ field-of-view, making the com- 

utational complexity and memory cost much higher. 
� This paper was recommended for publication by Joã o Luiz Dihl Comba. 
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Edit propagation is one of most important problems in im- 

ge editing, which aims to propagate pixel-wise edits indicated by 

sers’ strokes to all the pixels in the image, with similar pixels 

earby receiving most influence. The edits could be the amount 

f color adjustment, relighting, transparency value for defogging 

r matting, etc. Traditional image edit propagation techniques 

2–6] map all the pixels to a 5D feature space ( r, g, b, x, y ) where 

, g, b correspond to colors, and x, y are the pixel coordinates in 

D image plane. They favor the pixels with similar features to re- 

eive similar edits as the pixels covered by strokes and formu- 

ate this as an optimization problem to maximize that similarity 

hile maintaining image structure. Different from the above meth- 

ds, we take 360 ◦ panoramas using the equirectangular represen- 

ation. Under this setting, the actual horizontal distance between 

he points represented by two neighboring pixels decreases along 

ith increasing latitude. We visualize this distortion by the Tissot’s 

ndicatrices over a equirectangular 360 ◦ image in Fig. 1 . This gives 

n intuition that common 2D distance metrics poorly describe the 

patial relationship between pixels in an equirectangular image. In 

his paper, we lift pixels on the 2D image plane to their 3D spher- 

cal positions, where their actual distances can be approximated. 

ore specifically, in an efficient KNN (K-nearest neighbor) search 

tep, the distance between two pixels is calculated as their Eu- 

lidean distance in 3D coordinates. Then in the propagation step, 

he accurate big circle distance is used for effective propagation. 

he 3D spherical position along with RGB color channels form a 

https://doi.org/10.1016/j.cag.2021.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
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Fig. 1. Visualization of distortions in a 360 ◦ panoramas. 
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D feature space ( r, g, b, x, y, z ), and we use the method of [7] to 

reserve the high-dimensional manifold structure, which helps to 

ropagate users’ edits in a spatially consistent manner. Since the 

ptimization is performed over all the pixels, and the main compu- 

ational cost lies in the optimization that involves solving a system 

f linear equations with the same scale as the number of pixels, 

e need to reduce the scale of the linear system since a typical 

anorama contains millions of pixels. To achieve this without de- 

rading the visual quality, we propose to use two techniques for 

cceleration. We first cluster all pixels using a K-D tree structure in 

he feature space and just use the node corners of the K-D tree to 

pproximate original pixels. huThis significantly reduces computa- 

ion time and saves memory as the number of corners is orders of 

agnitude less than that of pixels. Then we just need to optimize 

he manifold structure of all the node corners by the adaptive KNN 

K nearest neighbor) method where the number of nearest neigh- 

ors and the corresponding weights are determined by the feature 

istributions. For instant edit propagation in ultra high-definition 

anoramas, we further propose a multiresolution approach. 

Inspired by previous edit propagation methods for planar im- 

ges [2–6] , our edit propagation on 360 ◦ panoramas is formulated 

s an optimization that aims to maximize the similarity of the ed- 

ts between pixels with similar features with the following con- 

traints: (1) edits on stroke pixels need to be maintained; (2) the 

mount of edits on other pixels should be determined by their dis- 

ance to stroke pixels in the feature space. Since pixels of 360 ◦ im- 

ges are essentially distributed on a sphere, their distance should 

e measured by the great circle distance, 1 which poses a challenge 

or the optimization. By approximating the great circle between 

wo points by the line segment connecting them, we can approx- 

mate the manifold by a linear structure locally, and the problem 

an be formulated using a linear system and solved efficiently. This 

pproximation maintains the ordering of distances compared with 

reat circle distances, and is a more accurate approximation for 

lose pixels which are more important for edit propagation. 

To the best of our knowledge, we are the first to propose a 

troke-based editing approach on 360 ◦ panoramas, and users only 

rovide sparse strokes, thus avoiding the laborious and tedious re- 

ions of interest (ROIs) selection. We summarize our main contri- 

utions as follows: 

• We propose the first stroke-based edit propagation method on 

360 ◦ panoramas, which provides seam-free and visually pleas- 

ing editing results by introducing the spherical distance metric 

and constructing the manifold structure for each pixel in the 

spherical domain. 
• To achieve instant feedback when propagating edits on ultra 

high-definition 360 ◦ panoramas, we further develop an efficient 

solution to propagate user-specified edits while preserving the 
spherical manifold structure and editing quality. 

1 A great circle is any circle that circumnavigates the sphere and passes through 

he center of the sphere. The great circle distance is the arc length between two 

oints on the great circle that passes through the two points. 
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. Related work 

.1. Edit propagation 

The pioneering work in edit propagation, proposed by An and 

ellacini [8] , created a simple and intuitive interface for image 

diting, where users only provide sparse inputs (usually strokes) 

hile the algorithm propagates the edits to the proper regions in 

he rest of the image, based on the pixel-level affinities. Due to the 

uge number of pixels, formulating the affinity-based edit prop- 

gation as an energy minimization problem that involves an all- 

ixel-pair propagation energy makes it infeasible to solve instantly. 

ne way for acceleration is to use clusters [9,10] to represent pix- 

ls as their linear combinations, which significantly reduces the 

umber of unknown variables. By reformulating edit propagation 

s a function interpolation problem in a high-dimensional feature 

pace, Li et al. [6] efficiently solved the problem using radial basis 

unctions. Another interpolation based method, proposed by Yata- 

awa and Yamaguchi [11] , approximated the edit parameters with 

onvex combinations of samples, which can achieve a better accu- 

acy in terms of colors and edit parameters. Another acceleration 

pproach worth mentioning is the hierarchical data structure based 

ethod [12] which achieved scalable edit propagation. 

Besides the efficiency improvements, much research attention 

as been paid to improving the visual quality of edit propaga- 

ion. To avoid visual artifacts after editing, Ma and Xu [13] pro- 

osed an algorithm to mitigate the aliasing artifacts. While the 

ethod is simple to implement, it achieves excellent anti-aliasing 

esults. Chen et al. [7] first proposed manifold preserving edit 

ropagation. By representing each pixel as a linear combination of 

ts neighbors in the feature space, their method is more robust to 

olor blending in the input data compared with previous methods. 

anifold preserving edit propagation can be accelerated by K-D 

rees [5] or quad-trees [2] . These approaches however require ad- 

quate user inputs to ensure editing quality. To address this, some 

rameworks [14,15] target reducing the burden at the user end by 

nly requiring a small amount of user guidance. Besides edit prop- 

gation on images, Yatagawa and Yamaguchi [16] proposed a tem- 

orally coherent video editing method on a frame-by-frame basis. 

Recently, machine learning based methods, especially deep 

earning based approaches, have been successfully applied to edit 

ropagation. Oh et al. [17] formulated the edit propagation as a 

lassification problem which can be efficiently solved using a sup- 

ort vector machine (SVM) to support high-resolution image in- 

uts. Chen et al. [4] proposed to utilize sparse dictionary learning 

o improve the memory efficiency while maintaining a high visual 

delity. Zhang et al. [18] proposed a color decomposition method 

or flexibly recoloring images while preserving the inherent color 

haracteristics. Endo et al. [3] trained a deep neural network on 

sers’ strokes and used the trained model to determine in which 

egions to propagate the edits. 

While all the above methods achieve promising edit propaga- 

ion results on 2D planar images/videos, directly applying them to 

60 ◦ panoramas without considering 3D spatial relations between 

ixels leads to unsatisfactory results. 

.2. 360 ◦ panorama editing 

360 ◦ media, consisting of 360 ◦ videos and images, is a great 

ay in VR applications to provide users with an immersive ex- 

erience. Due to the limitations in devices, directly capturing 

60 ◦ panoramas using an ultra-wide camera suffers from image 

uality loss, especially in the regions far from the image center. 

herefore, the most popular way in 360 ◦ panorama creation is 

titching together multiple images captured by a multi-camera 

ig [19,20] . Then proper blending techniques [21] can be used to 
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Fig. 2. Transformation of equirectangular coordinates into spherical coordinates. 
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e  
nsure a smooth transition between overlapping images. However, 

xisting multi-camera rigs usually cannot capture the entire 360 ◦

eld of view, and completion [22] techniques are usually applied 

o hole regions which often appear at the top or bottom of the 

anorama. A detailed survey about panoramic content creation 

an be found in [23] . The quality of the constructed panoramas 

an be evaluated using visual quality assessment [1] . Typical 

diting operations, such as copy-and-paste [24] , can be adapted 

o 360 ◦ panoramas by considering the sphere geometry constraint 

mbedded in panoramic images. Such constraints also need to be 

aken into account in panoramic image classification [25,26] and 

bject detection [27] in panoramas. 

. Our approach 

.1. Overview 

As shown in Fig. 7 (left), the input of our method is an equirect-

ngular 360 ◦ panorama and user-specified strokes indicating the 

esired edits (with different colors indicating different types of 

ppearance editing, e.g., a red stroke means recoloring to red, 

hile a black stroke means keeping unchanged). In our framework, 

ach pixel of the input 360 ◦ panorama is characterized by a 6- 

imensional feature vector f i = ( c i /σc , p i /σp ) , where c i refers to its 

GB color and p i refers to its 3D position (x, y, z) on a unit sphere.

c and σp are used to balance the importance of the two compo- 

ents. 

To project the 2D coordinate of a pixel P (x p , y p ) (See Fig. 2 )

n an equirectangular image (width = W, height = H) to its 3D 

pherical coordinate (x, y, z) , we first calculate its longitude and 

atitude coordinates (λ, φ) on the sphere by 

λ = ((x p + 0 . 5) /W − 0 . 5) ∗ 2 ∗ π
φ = (0 . 5 − (y p + 0 . 5) /H) ∗ π. 

(1) 

hen, we calculate its 3D coordinates on a unit sphere, where we 

et the 3D point (1 , 0 , 0) as the original point, and set its longitude

nd latitude to 0. Finally the 3D coordinates can be calculated as 
 

x = cos φ cos λ
y = cos φ sin λ
z = sin φ. 

(2) 

Because 360 ◦ panoramas are essentially defined on sphere, the 

ctual distance between pixels cannot be measured correctly by di- 

ectly applying the Euclidean distance metric on (x, y ) image coor- 

inates. Instead, using (x, y, z) spherical coordinates can reflect the 

ctual positions of pixels and guarantee correct edit propagation 

n the spherical domain. It not only conforms to the spherical na- 

ure of 360 ◦ images, but also simplifies and accelerates the KNN 

earch on sphere, thus can well preserve the spherical manifold 

tructure in edit propagation. 

We formulate the 360 ◦ panorama edit propagation as an op- 

imization problem, where we encourage the solution to preserve 
63 
he edits on pixels within the strokes while propagating the ed- 

ts to nearby pixels in the feature space, making the editing re- 

ults more natural. Inspired by Chen et al. [2,5,7] , our optimization 

or edit propagation is formulated in a manifold-preserving frame- 

ork. 

In the following subsections, we first describe how to construct 

he manifold on 360 ◦ panoramas. Then we present the mathemat- 

cal formulation of the edit propagation on panoramas, which is an 

nergy minimization defined on pixel edits. We also provide sev- 

ral techniques to speed up the computation, including K-D tree 

lustering, adaptive KNN and multiresolution speedup. 

.2. Manifold construction on 360 ◦ panoramas 

Inspired by Roweis and Saul [28] , we use Locally Linear Em- 

edding (LLE) to map a high dimensional space to a low dimen- 

ional manifold, with the intuition that each feature point can be 

pproximately described by a linear combination of its neighbors. 

he weight of each neighbor is calculated by minimizing the fol- 

owing objective: 

N 
 

i =1 

‖ f i −
K ∑ 

j=1 

w i j f n i j 
‖ 

2 , (3) 

here N refers to the number of pixels, K is the number of neigh- 

ors used for a pixel. w i j is the weight for the jth neighbor of the

 th pixel, satisfying 
∑ K 

j=1 w i j = 1 . n i j is the pixel index of the jth

eighbor of the i th pixel. f i is the feature vector of the i th pixel

nd f n i j 
is the feature vector of its jth neighbor. 

To minimize the above defined energy function, we first need 

o find out the neighbors for each pixel. Existing K-nearest neigh- 

or (KNN) search techniques are designed based on the L 2 -Norm 

etween the feature vectors, which means that all dimensions will 

e treated equally when calculating the distance. However, on the 

pherical surface, the spatial distance between two points should 

e the great-circle distance, i.e., the length of the arc connecting 

hem, see Fig. 2 . To be compatible with existing KNN search tech- 

iques, we instead use the Euclidean distance( P 
′ 
Q 

′ 
) between the 

wo points to approximate their great-circle distance ( P 
′ 
Q 

′ 
), since 

he Euclidean distance can be easily obtained by calculating the L 2 - 

orm between their coordinates in 3D space. This is also a reason- 

ble approximation since only spatially close pixels are of concern 

n this process, and we can utilize efficient KNN search technolo- 

ies (such as a K-D tree) to calculate the top K nearest neighbors 

f each pixel. The weight matrix W , which is an N × K matrix and 

hose element w i j is defined in Eq. 3 , can be obtained by solving 

 sparse linear system [28] . 

.3. Manifold preserving edit propagation 

We denote users’ edit for each pixel as g i and its propagated 

dit as e . Note that g is known and e is the target to optimize.
i i i 
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o obtain the optimal e i for every pixel in a manifold preserving 

anner, we define the following energy function [7] : 

 = 

N ∑ 

i =1 

u i (e i − g i ) 
2 + 

N ∑ 

i =1 

( 

e i −
K ∑ 

j=1 

w i j e n i j 

) 2 

, (4) 

here u i ∈ { 0 , 1 } is the edit indicator, used to indicate whether

here is user edit on pixel i (0 - no user edits, 1 - otherwise). The

rst term of the energy function encourages the final result to fol- 

ow the users’ edits, while the second term preserves the manifold 

tructure of the panorama. We do not give weights to them since 

e think those two terms are of equal importance. 

.4. Optimization 

Since the energy function defined in Eq. (4) is quadratic, it can 

e minimized by solving a large sparse linear system. However, di- 

ectly solving it is costly since the complexity of the linear sys- 

em depends on the pixel number N (in the order of millions for 

anoramas) and neighborhood size K of each pixel. For instant 

eedback, we prefer smaller N and K, and propose the following 

cceleration strategies. We use a K-D tree to cluster all the pix- 

ls in the feature space to reduce the number of unknowns in the 

bove objective, see Section 3.4.1 . We also propose adaptive KNN 

o adaptively determine the neighborhood size K and weights of 

eighbors, see Section 3.4.2 . For further acceleration, we propose a 

ultiresolution speedup strategy, see Section 3.4.3 . By combining 

hose strategies, we achieved significant acceleration without loss 

f the quality of editing results. 

.4.1. K-D tree construction 

As in [5,9] , we apply the K-D tree structure to cluster the pixels

f the input 360 ◦ panorama in the feature space. With this hierar- 

hical data structure, the objective can be rewritten as a function 

f the K-D tree node corners instead of pixels, which largely re- 

uces the number of unknowns and order of magnitude. With M

 M << N) indicating the number of node corners of the K-D tree, 

he energy function in Eq. (4) can be rewritten as: 

 = 

M ∑ 

i =1 

m 

2 
i 

⎛ ⎝ ˜ u i ( ̃  e i − ˜ g i ) 
2 + 

M ∑ 

i =1 

( 

˜ e i −
k ∑ 

j=1 

w i j ̃  e j 

) 2 
⎞ ⎠ , (5) 

here i enumerates all node corners of the K-D tree; ˜ u i ∈ [0 , 1] and 

 

 i refer to the edit strength and the value at node corner i, which 

re defined as a weighted sum of all pixels in the neighboring tree 

odes. m i is used to define the multiplicity of pixels contributing 

o the node corner (see [5] for more details). w i j represents the 

eights of neighboring node corners of node corner i, which are 

sed to reconstruct the manifold structure over all node corners. 

ith the edited result ˜ e i on each node corner, we calculate the 

dit on each pixel through a multiple linear interpolation using its 

nclosing node corners. 

.4.2. Adaptive KNN 

After the K-D tree construction, the manifold structure is re- 

onstructed using the node corners, and now KNN refers to the K

earest corners. In this section, we propose to optimize the mani- 

old structure using the adaptive KNN , which adaptively determines 

he number of nearest neighbors and their corresponding weights 

ccording to the feature distributions. See Fig. 3 , the fixed K strat- 

gy is not optimal, and it always requires larger K to ensure satis- 

ying editing results. Inspired by Ma and Xu [5] , we propose to use

n adaptive K to achieve a good balance between the efficiency 

nd visual effects. Observing that different regions in the spherical 

omain require different numbers of neighbors to preserve their 
64 
ocal manifold structure (e.g., a K-D tree node corner with many 

lose-by neighbors in the feature space or regions in high latitude 

equire fewer neighbors), we define the local density of a node cor- 

er as the averaged L 2 -Norm to its K d neighbors. 

 i = 

1 

K d 

K d ∑ 

j=1 

‖ f i − f n i j 
‖ 2 , (6) 

here K d is a constant and refers to the number of neighbors used 

o calculate density, and we set K d = 8 in this paper; f i , f n i j 
are the

eature vectors of node corners i and its j th neighbor corner, re- 

pectively. Then the adaptive number of neighborhood K i for each 

ode corner i is defined as: 

 i = cos (a · θ ) · d i − d min 

d max − d min 

(K max − K min ) + K min , (7) 

here d min , d max refer to the minimum and maximum distances 

etween all neighbors respectively, and K min , K max define the dy- 

amic range of the number of neighbors. Since the 360 ◦ panorama 

s severely stretched near the polar regions in its equirectangular 

epresentation, we use cos (a · θ ) as a weight to give less impact to 

ode corners closer to the poles of the sphere. θ is the latitude, 

nd a is used to constrain the weight change. In our experiments, 

e set K min = 2 , K max = 8 and a = 0 . 6 . 

In general, minimizing Eq. (5) preserves the manifold structure 

f each node corner. To speedup the minimization, we propose to 

ptimize the manifold structure by further magnifying the weights 

f similar node corners, while reducing the weights of nodes with 

arge differences, which is defined as: 

˜ 

 i j = 

w i j · (1 + βζi j ) ∑ K i 
j=1 

w i j · (1 + βζi j ) 
, (8) 

here 

i j = 1 − S 

( 

2 ∑ 

k =0 

( f 
k 
i − f 

k 
n i j 

) 2 + f arc 

( 

5 ∑ 

k =3 

( f 
k 
i − f 

k 
n i j 

) 2 

) ) 

. 

(·) is the Sigmoid function defined as S(x ) = 1 / (e −x + 1) , which

an smoothly map variable values from 0 to 1, and we use it to 

djust the weights of neighbors of a point, where similar node cor- 

ers get larger weights. ζ refers to the sum of color distance and 

osition distance on the sphere, and we set β = 0 . 5 in our imple-

entation. f k 
i 

denotes the k th component of the feature vector of 

he i th node corner, where k = 0 , 1 , 2 refers to the r, g, b values,

nd k = 3 , 4 , 5 refers to the x, y, z coordinates on the unit sphere.

s shown in the right of Fig. 2 , f arc (·) maps the Euclidean distance

 P 
′ 
Q 

′ 
) to the great circle distance ( P 

′ 
Q 

′ 
), which is defined as: 

f arc (d) = (2 arcsin ( 
√ 

d / 2)) 2 . (9) 

his mapping makes the adjustment of weights better correlates to 

he actual distance on the sphere. 

.4.3. Multiresolution speedup with downsampling and guided 

ltering based refinement 

360 ◦ panoramas are born to be high-resolution, and typically 

ontain tens of millions of pixels, which makes the KNN search, K- 

 tree construction and interpolation very time-consuming. For ef- 

cient propagation, we design a novel workflow as shown in Fig. 4 . 

aking an ultra high-resolution 360 ◦ panorama image as input, we 

rst downsample it to a lower resolution, and then use the K-D 

ree structure to hierarchically cluster all pixels, and minimize the 

nergy function on clustered node corners to obtain the editing 

ap. After obtaining the editing map under low resolution, we 

psample [29] it to the original size of the input panorama, and 

efine it using the guided filter [30] , which takes the original in- 

ut panorama as reference. Finally, with the refined editing map 
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Fig. 3. Comparisons between different K-value strategies. Black strokes indicate regions to remain unchanged, white strokes indicate regions to relight, and strokes of other 

colors indicate the regions to edit to the same target colors. Column 1: input image with strokes. Column 2: results using fixed K. Column 3: results using adaptive K strategy 

of Ma and Xu [5] . Column 4: results using our adaptive K strategy. See the zoom-in views and propagation maps for detailed comparisons. 

Fig. 4. Flowchart for edit propagation of HD images. 

Fig. 5. Comparison of results obtained with direct upsampling and our approach 

using propagation map upsampling and guided filtering. 
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nd user-specified edits, we render the final editing result. An ex- 

mple of the upsampled propagation map and the corresponding 

diting result is shown in Fig. 5 . Compared with the result of di-

ect upsampling approach, the result of our method (upsampling 

 filtering) is more visually pleasing with clearer boundaries be- 

ween affected and unchanged regions. 

. Results 

Our experiments are performed on a PC with an Intel i7-8700 

.2 GHz CPU and 32 GB RAM. We implement our method in C++, 

nd set σc = 0 . 2 , σp = 1 . 0 , K min = 2 , K max = 8 for all the cases. We

emonstrate the effectiveness of our approach on a variety of edit- 

ng tasks, including panorama relighting, panorama recoloring and 

anorama background replacement. We also apply these tasks to 

anoramic videos. Compared with previous edit propagation meth- 

ds, our approach is more flexible since it supports multiple-color 
65 
diting and simultaneous recoloring and relighting. In all examples 

f this paper, we use black strokes to indicate regions to remain 

nchanged, white strokes to indicate regions to relight (we will set 

ew light values for editing), and strokes of other colors to indicate 

egions to recolor. 

.1. Evaluation 

To evaluate our approach, we demonstrate the effectiveness of 

he adaptive KNN strategy, progressive propagation and compare 

ur approach with other state-of-the-art approaches. We also eval- 

ate the efficiency of our approach. 

Adaptive K. Using Adaptive K in our approach is critical for vi- 

ually consistent editing. We compare the results of our approach 

sing fixed K, adaptive K in [5] and our adaptive K strategy in 

ig. 3 . We aim to darken the sky and recolor the ground in the

rst example, and turn the leaves green in the second example. 

he zoom-in views show that the fixed K = 5 cannot well propa- 

ate the relighting edits thoroughly and fail to propagate the green 

olor in the left side, whereas previous work [5] and our adaptive 

trategy can produce better darkening and recoloring effects. Com- 

ared with [5] , our strategy can generate slightly better darkening 

nd recoloring results, and the smaller average K values help to 

educe the time and memory cost. 

Progressive propagation. To better demonstrate how the edit 

ropagation works if users draw multiple strokes, we perform pro- 

ressive propagation, in which we propagate edits for strokes of 

he same color in each step. See Fig. 6 , in the first step, the

round region is painted yellow by the yellow strokes, while the 

ky and grass regions are incorrectly colored because there are 

o other constraints to keep their original color; then the top re- 

ion turns to orange after drawing orange strokes; finally, the sky 

nd grass regions get their original colors back after placing a few 

lack strokes (which indicate maintaining their original colors). 

he three steps above vividly show the role of each set of strokes 

nd their affected areas. Propagating edits progressively can guide 

sers to place more strokes to achieve appropriate results. We also 

rovide edit propagation maps for the orange and yellow strokes 

n each step. 

Comparisons with state-of-the-art methods. We first compare our 

ethod with the latest state-of-the-art edit propagation method 

Manifold quad-tree) [2] in Fig. 7 , and our method is superior in 

enerating seam-free results; see the close-up images. We also 

ompare our method with other representative methods, includ- 

ng interpolation based method (RBF) [6] , manifold preserving 

ethod (Manifold K-D tree) [5] and deep learning based method 
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Fig. 6. Edit propagation results by drawing strokes progressively. In the first step, yellow strokes are placed to color the ground region; then, a few orange strokes are added 

to color the top and middle region; in the final step, black strokes are drawn to indicate pixels that need to be kept unchanged. The second row shows the edit propagation 

results after propagating the edits indicated by the strokes in each step. The last row gives propagation maps w.r.t. orange and yellow strokes respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Comparisons with the method in Chen et al. [2] . The strokes in the input are defined in the same way as in Fig. 3 . The zoom-in windows magnify patches crossing 

equirectangular vertical boundaries, and the origins of the close-ups are shown in both equirectangular and spherical views using different colored rectangular windows. We 

also provide their propagation maps for better comparisons (see the top-left corner). (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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DeepProp) [3] . Results are shown in Fig. 8 . Since previous meth- 

ds define neighborhoods in 2D plane, they all suffer from the 

seam” problem due to the discontinuity between the left and 

ight boundaries, and the propagation always fails to expand near 

he pole region; see the zoom-in views and propagation maps. As 

or the result of (DeepProp) [3] in the top-right, although it avoids 

he “seam” problem, there are many artifacts indicated by yellow 

rrows due to the incorrect propagation. In contrast, our method 

roduces smoother and more natural-looking propagation results 

ithout noticeable artifacts. 

For fair comparison, we also compare our results with the edit- 

ng results of altered 2D edit propagation methods that consider 

yclic images, see the first two rows of Fig. 9 . The spherical views

how that the continuity problem on the rectangular representa- 

ion could be fixed by using the cyclic 2D distance metric. How- 

ver, measuring the pixel distance in the 2D domain inevitably re- 
66 
ults in inaccurate distance between pixels, and the error increases 

rom the equator to the top and bottom ends in the 2D domain. 

n order to correctly measure the distance between neighboring 

ixels, we instead consider their distance in the spherical domain. 

he 3D representation we use is a way that can approximate the 

istance on the spherical surface, and experiments show the ad- 

antages of our method over previous ones; see the marked green 

oxes and edit propagation maps in Fig. 9 . 

To investigate how the lengths of strokes affect the final editing 

esults, we also provide additional examples using more and longer 

trokes which can mitigate the problem of insufficient strokes near 

op/bottom regions, as shown in the last two rows of Fig. 9 . Ob-

iously providing more and longer strokes improves the results 

f all the methods, the results of our method are still more con- 

istent and smoother than the results of other methods; see the 

arked green boxes and propagation maps in Fig. 9 . In addition, 



Y. Zhang, F.-L. Zhang, Y.-K. Lai et al. Computers & Graphics 96 (2021) 61–70 

Fig. 8. Comparisons with the methods in Li et al. [6] , Ma and Xu [5] and Endo et al. [3] . The strokes in the input are defined in the same way as in Fig. 3 . Methods in 

[3,5,6] all generate pixels with inconsistent colors at the left and right border of the equirectangular image. In comparison, our method could generate smooth transition 

on the border region if users watch that region in the VR mode. More particularly, although the method in [3] is able to generate consistent color at the border sometimes 

(top-right), it cannot preserve the texture details well, and produces more artifacts (see the yellow arrows). For better comparisons, we also provide the propagation map of 

each result (see the bottom-left corner). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Comparison with 2D edit propagation on cyclic images. The first two rows give the results using initial strokes, and the next two rows show the results using more 

and longer strokes. The input strokes are defined in the same way as in Fig. 3 . The second column shows the edit propagation results of Li et al. [6] ; the third column 

improves the result of the second column by considering the cyclic images; the last column is our results. For better demonstration, we also provide the propagation 

maps and spherical views in left and right corners. The green boxes indicate the differences between the results of performing [6] on cyclic images and our method. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

67 
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Fig. 10. More comparisons with the method of Ma and Xu [5] . Compared with [5] , our method can smoothly propagate edits in the spherical domain, and can better preserve 

the continuity of the editing between the left and right boundaries. For better comparisons, we provide propagation maps, spherical and zoom-in views. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Performance comparisons. 

Fig. 7 (1) Fig. 7 (2) Fig. 8 (1) Fig. 8 (2) Fig. 10 (1) Fig. 13 (2) Fig. 13 (3) 

Type image image image image image video video 

Resolution 5120 × 2560 6144 × 3072 12362 × 6181 6144 × 3072 60 0 0 × 30 0 0 1280 × 640 1920 × 960 

#. Frames − − − − − 272 225 

w/o Multiresolution 9.5s 17.7s 31.4s 15.5s 17.6s − −
Multiresolution 

Adaptive K [5] 2.5s 3.4s 6.9s 3.2s 3.3s 39.5s 50.9s 

Our Adaptive K 1.6s 2.1s 5.8s 1.9s 1.7s 25.5s 39.6s 

Li et al. [6] 1.8s 2.3s 4.9s 1.6s 1.4s 20.8s 35.7s 

Ma et al. [5] 2.7s 2.5s 6.1s 2.2s 2.4s 31.7s 57.6s 
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ur method is more efficient because fewer strokes help to reduce 

he complexity of optimization. 

We give more comparison results between our method and pre- 

ious manifold preserving edit propagation method [5] in Fig. 10 . 

esults marked in blue and orange are produced by Ma and Xu 

5] and our method, respectively. Our method performs better 

n these cases, where the continuity between the left and right 

oundaries is well preserved and the sparse edits are smoothly 

ropagated in the spherical domain; see the spherical, zoom-in 

iews and propagation maps of each example. 

Performance. In Table 1 , we give the performance of different 

ethods on the images/videos appeared in this paper. Those in- 

lude our method using adaptive K strategy in [5] and our adap- 

ive K and weighting strategy. Given that most input 360 ◦ panora- 

as contain millions of pixels, we apply the K-D tree accelera- 

ion for all the cases to save memory and reduce computational 

ost. Take the first case of Fig. 7 as an example, our method takes

 total of 1 . 6 s , which includes the K-D tree construction( 0 . 08 s ),

NN search( 0 . 53 s ), energy minimization( 0 . 39 s ), K-D tree interpola-

ion( 0 . 03 s ), color adjustment( 0 . 17 s ) and multiresolution( 0 . 4 s ). We

lso compare the performance of our method with and without 
m

68 
he multiresolution strategy. Without the multiresolution strategy, 

 360 ◦ panorama containing 12362 × 6181 (more than 76 Million) 

ixels costs 31 . 4 s using our adaptive K and weighting strategy. 

ith the multiresolution strategy, the adaptive K [5] costs 6 . 9 s and 

ur adaptive KNN strategy costs only 5 . 8 s , which is a significant 

mprovement over previous methods. Finally, we report the perfor- 

ance of previous 2D edit propagation methods [5,6] . For a fair 

omparison, we also apply the multiresolution strategy on the pre- 

ious methods. Results show that our method is faster than [5] , 

nd achieves comparable performance with [6] . 

.2. Applications 

Our method enables many interesting image editing applica- 

ions, and can produce visually pleasing editing results. Fig. 11 

hows an application of background replacement. We let users 

raw black and white strokes on the input panoramic image to 

oughly specify the background and foreground content. Then our 

dit propagation method is used to calculate the possibilities of 

ixels belonging to background to generate a soft background 

ask. Such masks are then used as a guide to blend two 360 ◦
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Fig. 11. Background replacement of 360 ◦ panoramas. 

Fig. 12. Color theme adjustment for 360 ◦ panoramas. 

Fig. 13. Edit propagation in 360 ◦ videos. 

p

p

p

w

c

e

s

t

g

w

e

v

f

f

5

i

a

o

anoramas to produce background replacement results. Fig. 12 

resents another application which adjusts the color theme of 360 ◦

anoramas. 

We also extend our algorithm to 360 ◦ videos. For 360 ◦ videos, 

e add another time dimension t, and the feature vector be- 

omes a 7D vector f i = ( c i /σc , p i /σp , t i /σt ), where σt is a param- 

ter used to set the importance of the time dimension. We first 

pecify edits by sparse strokes in keyframes, and feature vec- 

ors in all frames are organized together, and the video propa- 

ation problem can be solved in the image propagation frame- 

ork. For better propagation across frames, we set σt = 10 . 0 for 

ach feature vector. Fig. 13 shows propagation results in 360 ◦
69 
ideos 2 . For simple scenes we only need to specify edits in a 

ew frames, and the edits can be smoothly propagated across all 

rames. 

. Conclusions 

In this paper, we propose an approach to efficiently propagat- 

ng sparse edits on 360 ◦ panoramas. We formulate this problem 

s an energy optimization, and our solution preserves the edits 

n strokes and the manifold structure of each pixel. To produce 
2 See the video demo of our results at https://youtu.be/sF9X-jae2dA . 

https://youtu.be/sF9X-jae2dA
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eam-free and visually pleasing results, we map the 2D equirectan- 

ular pixels to the 3D coordinates, and approximate the spherical 

istance with the Euclidean distance in 3D space, which enables 

ast KNN searches in the feature space. To provide instant feed- 

ack during the interactive editing, we propose an effective solu- 

ion which includes the following strategies: K-D tree construction 

o cluster pixels in feature space, which largely reduces unknowns 

n the linear equations to solve; adaptive KNN, which further sim- 

lifies the linear system of the optimization while improving the 

isual quality of the editing results at the same time; a multires- 

lution approach with a downsampling-upsampling strategy for 

urther acceleration. Comparative results show that our proposed 

ethod is advantageous over previous methods, and can produce 

atisfying edit propagation results efficiently. 

Our method has the following limitations: (1) since only the 

olor and position information is used to represent the feature vec- 

or, our method is not aware of the semantic information, which 

ay lead to incorrect color propagation in challenging cases; 2) 

sers still need to carefully specify strokes as incorrect strokes may 

ntroduce artifacts. 

In the future, we will consider adding more features to repre- 

ent pixels, such as textures and semantic information, to enable 

igh-level edit propagation in 360 ◦ panoramas. For more efficient 

ser interaction, we will also consider more intuitive and robust 

ays of user guidance. 
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