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Abstract Region duplication is one of the image-tampering
techniques in which a part of image is copied and pasted into
another region of the same image. In this paper, a robust
duplication detection algorithm is proposed against severe
degradations such as illumination changes, blurring, large
scaling, noise contamination and JPEG compression. We
introduce an adaptive phase correlation scheme in the log-
polar domain, which is effective to locate the most salient
local feature of an image patch on frequency band. By using
the information collected from the band limitation, dupli-
cated regions can be correctly located. Our contribution is
to present a robust image duplication detection algorithm
which can handle large scaling manipulation while pre-
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serving detection performance under other manipulations
or degradations. We perform degradation and comparison
test on various tampered images, and experimental results
show that the proposed algorithm achieves satisfactory per-
formance.

Keywords Duplication detection · Log-polar domain ·
Band limitation · Scaling manipulation

1 Introduction

With the rapid development of multimedia and Internet tech-
nology, we have an ever-increasing availability of digital
media, such as images and videos. However, maliciously
tampered images are spreading rampantly due to the wide
use of image editing softwares such as Photoshop, Picasa.
Among the ways of image duplication, copy-move forgery
is the most popular and common one, in which one part of an
image is copied and pasted into another region of the same
image to make up a scene or to conceal some information.

Region duplication detection, which is also called copy-
move detection, has become a research focus in recent years.
Fridrich et al. [1] proposed a block-matching algorithm
which takes the quantified coefficients of discrete cosine
transform of 8 × 8 patches as feature vectors and locates
matching pairs among lexicographically sorted features.
Popescu et al. [2] improved the aforementioned algorithm
by introducing PCA to reduce the length of feature vector to
32; however, this algorithm cannot detect forgery with rota-
tion. Similar algorithms are proposed by Li et al. [3] and Gul
et al. [4], where SVD is adopted instead of PCA. Mahdian
et al. [5] employed invariant blur moment to represent the
feature in the patch.
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While the above algorithms can only handle manipu-
lations like translation or grayscale changes, some other
algorithms are further proposed to detect geometric manip-
ulations such as rotation, scaling or flipping. Bayram et al.
[6] introduced FMT(Fourier–Mellin transform) to compare
image patches which are invariant to scaling and rotation.
Although this algorithm is robust to JPEG compression, in
practice, it can only detect slight rotation and scaling because
of the intrinsic geometric limitation of rectangular patch. Pan
et al. [7] employed the SIFT feature to detect forgery, achiev-
inggoodperformanceondetecting regionswith large scaling,
but this algorithm needs over 50 feature points in each patch.
In the same year, Ryu et al. [8] proposed a copy-move forgery
detection algorithm based on the Zernike moment which is a
rotation invariant feature. Bravo-Solorio et al. [9] proposed a
algorithm by projecting feature in a patch onto a 1D descrip-
tor using log-polar coordinates. Shao et al. [10] proposed a
phase correlationmethod based on polar expansion and adap-
tive band limitation for region duplication forgery detection.
Owing to the circular window expansion and phase correla-
tion, their method is effective for many difficult cases, such
as copy-move, rotation, grayscale change. Though achiev-
ing promising performance, their method is not efficient due
to the point-by-point scanning in circular windows match-
ing. Wang et al. [11] proposed a new method for duplicated
regions detection and localization by merging blur and affine
moment invariants, which is also effective under some sim-
ple affine transforms and blur degradations. Chen et al. [12]
proposed a novel region duplication detection method that
is robust to general geometrical transformations. Kuo et al.
[13] applied the dual spare features and structure similarity to
enhance the detection performance of the region duplication.
Zheng et al. [14] extractedHarris corner points and get binary
descriptors of each key point, then located the tampered
regions by comparing the similarity between descriptors. Tan
et al. [15] presented a new framework for object recognition
via weakly supervised metric and template learning.

Motivated by [10], which takes into account the local frac-
tal dimension, we propose a robust image forgery detection
approach. With the improved adaptive band limitation, our
method can locate intrinsic feature andbandof imagepatch in
the frequency domain and detect duplicated regions robustly.

Our Main Contribution We extend the band limitation
to the frequency domain of the log-polar coordinates of the
image, in which an improved adaptive band limitation proce-
dure is implemented to automatically select useful band for
detection. With this scheme, forgery of large scaling (scaling
ranging from 30–600%) can be effectively detected using
our algorithm.

This paper is organized as follows. In Sect. 1, a brief intro-
duction and review of previous work is presented. In Sect. 2,
the details of the proposed algorithm are elaborated. We give
a comprehensive understanding on how the adaptive band

limitation works on log-polar domain. In Sect. 3, we tested
our algorithm on massive test images with various types of
manipulations and their mixture. Comparisons are further
made to show advantages and disadvantages of the proposed
algorithm. Finally, we conclude our work and give an analy-
sis in Sect. 4.

2 Methodology

2.1 Patch Expression in Log-Polar Coordinates

First, color images are transformed into grayscale so that a
log-polar expansion and Fourier transform can be applied.
For a scanning patch in a color image, we expand the patch
from Cartesian coordinates to log-polar coordinates using
bilinear interpolation. This procedure ensures that the Fourier
transform and band limitation framework can be utilized in
log-polar coordinates where a point is identified by two num-
bers: logarithm of distance to center point and the rotation
angle.

When a patch is expanded using log-polar coordinates,
both scaling and rotation in original patch are performed in
the new domain, which makes it possible to identify simi-
lar patches by the translation invariant features. The bilinear
interpolation may introduce some instability or contamina-
tion in high-frequency band. Fortunately, the band limitation
procedure can ensure the robustness of detection, which will
be analyzed in Sects. 2.3 and 3.

The image patch size is essential to the detection perfor-
mance. For practical use, we choose the size of overlapping
patches to be 32 × 32 in experiments.

Assuming that height andwidthof eachpatch are the same,
we define the log-polar expression of each patch as follows.
For an image patch I (p, q) (p, q ∈ 1, . . . , 32), the corre-
sponding log-polar expression of patch is as follows.

{
x = log(

√
p2 + q2)

y = arctan(p/q)
(1)

For computational efficiency in FFT(fast Fourier trans-
form), the ranges containing grid of x and y as integer should
be in the form 2k , which is also the size of the expanded and
interpolated image patches. In this work, we test different
combinations of ranges along x and y, and set ranges of x
and y to be 32 and 64 for the trade-off on computational
complexity and performance. Figure 1 shows that an image
is transformed into log-polar coordinates.

2.2 Phase Correlation to Detect Forgery

Phase correlation is a nonlinear algorithm based on the
Fourier cross-power spectrum. Because this algorithm only
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Fig. 1 Log-polar expansion of lena. Left image (256×256) is the orig-
inal image, and the right image is the transformed one. The expansion
origin is set to be the center of lena image, and radius=128

takes into account the phase information in the frequency
domain, the reliance on the spatial information is remark-
ably reduced, which leads to a relatively robust matching
approach compared to the spatial ones.

We now describe how to implement phase correlation to
detect the forgery in images. For a normalized rectangular
image N (x, y), which is obtained by expanding and inter-
polating the scanning patch in the log-polar coordinates, its
discrete Fourier transform (DFT) can be represented as:

F(u, v) =
m−1∑
x=0

n−1∑
y=0

N (x, y)e[−2π i(ux/m+vy/n)] (2)

We define DFT of the source patch and target patch as
Fsource(u, v) and Ftarget(u, v), respectively, and the corre-
sponding correlation, which is called cross-power spectrum,
is defined as:

C(u, v) = Fsource(u, v) × F∗
target(u, v)

‖Fsource(u, v) × F∗
target(u, v)‖ (3)

where F∗(u, v) represents the complex conjugate of F(u, v).
In the next step, the inverse Fourier transform of C is calcu-
lated as:

R(x, y) = 1

mn

m−1∑
u=0

n−1∑
v=0

C(u, v)e[2π i(ux/m+vy/n)] (4)

Fourier shift theorem proves that the shift between two
patches is equivalent to the phase difference in frequency
domain. Thus, if there is only translation between two
patches, by taking the inverse Fourier transform of the cross-
power spectrum, a unit pulse function can be obtained.

(xpeak, ypeak) = argmax
(x,y)

R(x, y) (5)

Observing Eq. 5, we find that R will reach the peak value
on (xpeak, ypeak), while on the other positions, values should
be close to 0. In this way, we can estimate the shift according
to the peak position. The peak value of the pulse function is

highly related to howmuch the content of patches overlaps. If
two patches share the same content but only a shift, the peak
value will reach 1, while on the other positions, the values
are all 0. Along with the decreasing shared content, the peak
value becomes lower.

For detecting forgery in an image, we partition the image
into overlapping patches.Assuming the patch size isa×b and
the step length is s, then for an image with size lheight×lwidth,
the number of the overlapping patches is calculated by Eq.
6.

Cpatch =
(⌊

lheight − a + 1

s

⌋
+ 1

)
×

(⌊
lwidth − b + 1

s

⌋
+ 1

)

(6)

Since each patch is transformed to a rectangle in log-polar
coordinates, its shape in the original coordinates should be a
disk; hence, a = b. From the above equation, we can see that
the number of patches is inversely proportional to s2, which
means that with the increasing step size, the searching space
can be significantly reduced. However, a big step will likely
result in a poor detecting performance; therefore, a trade-off
should be carefully considered. In our implementation, the
step size is set to be 2,which provides an acceptable searching
speed as well as detection accuracy.

2.3 Improved Adaptive Band Limitation

For natural images, the main feature frequency usually
concentrates on the medium-low band. Based on this obser-
vation, the band limitation procedure is firstly proposed by
[16]. We implement this procedure to recognize the finger-
print. By using the band limitation, the peak value of the
inverse Fourier transform of the correlation matrix is signifi-
cantly enhanced. In a following paper by [17], the correlation
matrix is further normalized, resulting in a regularized range
[0, 1]. The normalized band limitation is shown to be very
effective in iris recognition.

In region duplication detection, the tampered region is
always post-processed under manipulations such as adding
noise, blurring or compression. Besides, due to the bilinear
interpolation procedure introduced in Sect. 2.1, some infor-
mation in high frequency is contaminated or even lost. All the
aforementioned factors unfortunately lead to certain difficul-
ties in detecting forgery by using canonical phase correlation.
In this paper, we introduce a band limitation scheme to solve
this problem.

See Fig. 2, our band limitation L(·) can be formulated
as follows. Suppose that Fcenter

source and Fcenter
target are the discrete

Fourier transform of the expanded source patch and target
patch in which the 0 frequency has been shifted and centered,
where u ∈ 0, 1, . . . ,m − 1 and v ∈ 0, 1, . . . , n − 1,m and n
are the height and width of the expanded patch, respectively.
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Fig. 2 Flowchart of the adaptive band limitation

Fig. 3 Example of sub-patches for estimating general fractal dimen-
sion in log-polar coordinates

Then, with the limitation factor σ , we can implement the
band limitation as follows.

{
L(Fcenter

source(u, v)) = Lsource(uL , vL)

L(Fcenter
target (u, v)) = L target(uL , vL)

(7)

where uL ∈ �mσ/2� − 1, . . . ,m − �mσ/2� − 1 and vL ∈
�nσ/2� − 1, . . . , n − �nσ/2� − 1. In this step, the high-
frequencypart is cut off from theFouriermatrix and the rest of
the band forms a new medium-low frequency matrix. Then,
we calculate the correlation matrix of Lsource and L target,
and implement inverse Fourier transform on the correlation,
then obtain a result matrix whose peak can be remarkably
enhanced.

Limitation factor σ plays an important role in the band
limitation and determines how much band should be dis-
carded, and we propose an effective method to determine
σ . In the previous works [16,17], the factor σ is specified
according to different database. In [10], a piecewise linear
function with respect to the local fractal dimension is pro-
posed to control the limitation factor according to different
image natures. This algorithm works very well for a polar
expansion using bilinear interpolation, but when we imple-
ment the same algorithm on the log-polar coordinate, the
performance degrades. This happens because conventional
band limitation is presented in terms of polar expansion, in
which counting a unit step length to the center point on origi-
nal patch is equivalent to counting one pixel in the expanded
patch; however, it is not true in the log-polar framework.
In general, if a disk centered at origin in Cartesian coordi-
nates is mapped to a rectangle with length k1 and the circle

around the disk by stepping the same radius is mapped to a
rectangle with length k2 , then we have k1 > k2. Thus, in
an understandable manner, local frequency at the point near
the center is reduced, while local frequency at the point far
from the center is enhanced. The proposed improved band
limitation procedure is based on this observation.

In this procedure, a 32 × 32 patch is partitioned into
four overlapping sub-patches centered at the same point with
lengths 4, 8, 16 and 32, respectively. This partition is shown
in Fig. 3. For ease of visualization, we choose the famous
“lena” image to demonstrate the partition result. Size of
these sub-patches are selected according to the log opera-
tor; thus, results will be 2, 3, 4 and 5, accordingly. Denote
the four sub-patches with SP1, . . . , SP4, we calculate the
fractal dimension of each sub-patch using box fractal dimen-
sion estimation algorithm proposed by [18] and obtain the
corresponding fractal dimension Dim1, . . . ,Dim4. Next, we
give a general fractal estimationDimg for the expanded patch
as the average of Dim1, . . . ,Dim4. At last, we calculate the
limitation factor σ according to the value of Dimg using the
piecewise linear function proposed by [10], see Eq. 8.

σ =
⎧⎨
⎩
0.5 Dimg < 2.1
0.5 + 0.6(Dimg − 2.1) 2.1 ≤ Dimg ≤ 2.6
0.8 Dimg > 2.6

(8)

For a pair of patches to be matched, we estimate gen-
eral fractal dimension of each patch and choose the smaller
dimension as the limitation factor to be used in band limita-
tion.

2.4 Strategy for Forgery Region Marking

The strategy to marking a duplicated region, which strongly
influences the performance, is an important procedure in
forgery detection since image proportion around the contour
of forgery region is always hard to handle. In this paper, we
introduce a strategy which is different from previous ones.
This strategy starts from marking matched pairs of image
patches on the center points.After thewhole image is scanned
and detected, some points which may be isolated or con-
nected to other ones will appear in the mask image. In a
sense that detected points from the same region will cluster,
we can easily discard some singular or isolated points which
are far from the others. Assuming that a detected point is
dx,y , we define its neighborhood corresponding to the patch
radius as:

Neighborhood(dx,y) = {du,v|(x−u)2+(y−v)2 < 16} (9)

Thus, if Neighborhood(dx,y) = 0, which means that no
other detected center points are inside the neighborhood of
dx,y , this point is judged to be isolated. For all the detected
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(a) (b)

(c) (d)

Fig. 4 Robustness test result. Illumi represents “illuminance” while QR for “quality factor” and Rot for “rotation”

center points which are not isolated points, we expand the
point with a disk patch with radius 16, and points inside the
disk are marked as detected subregions. At last duplicated
region is marked by the union of all subregions.

3 Experiments and Analysis

In this section, we first test our algorithm on tampered images
with various types of manipulations as well as degrada-
tions. The result shows the robustness and versatility of our
approach. Then, comparison is made compared with other
algorithms. Experimental results show the advantages of
our algorithm. To evaluate the performance of the proposed
algorithm, we employed a common metric (TPR(true posi-
tive rate) and FPR(false positive rate)) in region duplication
detection scope, which are defined as:

T PR = |C ⋂
C

′ | + |M ⋂
M

′ |
|C + M | (10)

FPR = |C − C
′ | + |M − M

′ |
|C + M | (11)

whereC and M represent the sum of pixels in original region
and forgery region of source image, respectively, while C

′

and M
′
represent the sum of pixels in original region and

forgery region of detected image, respectively.

3.1 Robustness Test and Analysis

In this part, we randomly select 50 natural images to generate
150 forgery images, including various manipulations such as

Table 1 Test cases, where Ill represents “illuminance” and Rot for
“rotation”

Test case Range Image number

Illumination changes Grayscale [−50, 50] 20

Rotation Degree [0, 360] 20

Scalingy Resize [0.3, 6.0] 30

Rotation and scaling Combinatorial 40

All Combinatorial 40

illuminance change, rotation, scaling. The description of the
benchmark is shown in Table 1, and the test result is shown
in Fig. 4. It can be seen that our algorithm can detect forgery
with high accuracy, while it preserves a low false detection
rate. In the cases of illuminance change and rotation, TPR
reaches over 90% and FPR is below 7%. While in the cases
containing scaling, TPR decreases to around 80% and FPR
increases to around 18%. In our test, for scaling between 0.3
and 6, the detection performance decreases, but can still give
acceptable results and locate the forgery with relatively high
precision.

To further verify the robustness of our algorithm against
image degradations, we choose 50 test images with various
manipulations, and contaminate them using various degrees
of blurring, Gaussian noise, rotation and scaling. The test
result is shown in Fig. 5. From the results, we can find that the
performance of our algorithmdrops a littlewhen forgery con-
sists of blur and scaling.Because the blurringwill affect some
part of the medium-low frequency band. However, our algo-
rithm can still find sufficient information by using adaptive
band limitation, leading to acceptable detection result. In the
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Fig. 5 Degradation test results. aOriginal image, detection result with
Gaussian noise; b original image, detection result with quality factor 60
& scaling & rotation; c original image, detection result with 5*5 blur
& scaling; d original image, detection result with quality factor 40 &
scaling rotation

case ofGaussian noise and JPEG compression, our algorithm
maintains stability and reliability. Experimental results show
that large scaling affects detection performance more than
other manipulations or degradations, which demonstrates the
robustness of our algorithm to difficult situations.

3.2 Comparison Test and Analysis

We compare our algorithmwith several approaches proposed
by [6,7,10]. The test is implemented in terms of various
manipulations and several levels of degradations, see Fig.
6. We only present TPR here because it has already been
provided to be effective under the performance evaluation.
It is easy to see that our algorithm achieved almost the same
detection performance as the one proposed by [7] in general
test without degradations, while other two algorithms do not
perform well under scaling. However, when the images are
contaminated by Gaussian noise, the stability of [7] declines
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Fig. 6 Manipulations and degradations of different algorithms test
result. PSNR represents “peak signal-to-noise ratio”

sharply along with the noise level. The other two algorithms
always suffer from manipulation of scaling.

To further evaluate the effectiveness of our method, we
detect the duplicated objects in tampered images on public
dataset MICC-F220, which is composed of 220 images (110
are tampered and 110 originals). Figure 7 shows four groups
of detection results, which consist of scaling and rotation.
Table 2 shows FPR, TPR, processing of [19] and our method,
which shows the advantages of our method.

It is supported by our test that our algorithm is rela-
tively more effective for detecting large scaling forgery in
images. In particular, based on thework by [10], the proposed
algorithm maintains the strong robustness and reliability for
detecting rotation. Moreover, despite to severe degradations,
the proposed improved adaptive band limitation procedure
generally works with higher accuracy and robustness than
the ones in comparison.

4 Conclusion

In this paper, we present a robust image forgery detection
approach, which works under framework of log-polar expan-
sion and phase correlation. With improved adaptive band
limitation, the proposed algorithm can locate intrinsic feature
band of an image patch in frequency domain and detect dupli-
cated regions with significant reliability and robustness. We
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Fig. 7 Duplicated objects detection in tampered images (Left: rotation;
Right: scaling) on public dataset

Table 2 FPR, TPR and processing time (average time per image) of
[19] and our method

Method FPR (%) TPR (%) Time (s)

Amerini et al. [19] 8 95 6.54

Our method 6 99 4.72

test our algorithm on various datasets including manipula-
tions and degradations. Experiments show that our algorithm
has remarkable performance on detecting forgery with large
scaling.
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